ebook img

QbD implementation in Generic Industry PDF

33 Pages·2013·1.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview QbD implementation in Generic Industry

  QbD implementation in Generic Industry: IFPAC Overview and Case-Study JAN 2013 RR&&DD IInnnnaa BBeenn-AAnnaatt, QQbbDD SSttrraatteeggyy LLeeaaddeerr, TTeevvaa PPhhaarrmmaacceeuuttiiccaallss Three Core Components of QbD and Generic Industry:   How Do They Overlap Quality by Design Generic Industry 11. CCllearlly ddeffiiniing thhe iintenddedd purpose off 11. RReprodduciibblly MMakkiing ““AA ddrug prodductt r the future developed product and design a that is comparable to brand/reference e l c this product to fit its purpose listed drug product in dosage form, s i n ssttrreennggtthh, rroouuttee ooff aaddmmiinniissttrraattiioonn, qquuaalliittyy oo i t 2. Understanding what attributes of this ec and performance characteristics, and n n intended use" product are critical so it (product) will keep o c e servingg its intended ppurppose h TT 2. Providing uninterrupted supply of high 3. Enhanced understanding ‘what’ impacting quality and affordable medication to our the critical quality attributes and ‘how’ patients (materials, process, packaging etc) ; define control strategies so that the intended 3. Efficiency and Speed purpose of the product will reproducibly maiinttaiin iitts iinttegriitty   QbD for Generics: Finding the right balance between Speed, Efficiency and Excellence  Overview of QbD (GPhA, May 2012) QbD Guide for Generics:   Step 1-Product Design  RLD Characterization  Quality Target Product Profile  CCrriittiiccaall QQuuaalliittyy AAttttrriibbuutteess GPhA/FDA CMC Workshop, May 2012 QbD Guide for Generics:   Step 2 - What are the potential Risks Risk Assessment Defines the Development Strategy What are the Risks?...  AAPPII  Excipients  Formulation and Process How do we stay efficient  Equiipment  Effective Prior Knowledge utilization  Testing and management  Packaging  GGeenneerriicc IInndduussttrryy hhaass aa lloott ooff  … information and in-house knowledge available  DDaattaa bbaasseess ooff pprree-ccrreeaatteedd Ishikawa diagrams in order to harmonize and streamline the Risk Assessment pprocess  Historical data-mining  HHiissttoorriiccaall DDaattaa MMiinniinngg:: DDrruugg LLaayyeerriinngg ooff PPeelllleettss EExxaammppllee Example: Previously developed product, multiply batches are available for Data Mining: In-Process Pellets Assay vs. Fines Correlation BBaasseedd oonn tthhee ffoouunndd rreellaattiioonnsshhiipp, AAssssaayy decreases ~0.6% with each % fines How do we control low % fines by process parameters ((DDrruugg LLaayyeerriinngg))… ‘All examples are for illustration purposes only’  HHiissttoorriiccaall DDaattaa MMiinniinngg:: DDrruugg LLaayyeerriinngg ooff PPeelllleettss EExxaammppllee AAccttuuaall PPrroocceessssiinngg PPaarraammeetteerrss ffrroomm aallll aavvaaiillaabbllee hhiissttoorriiccaall lloottss wweerree ccoolllleecctteedd aanndd ‘‘ddaattaa--mmiinneedd’’ PPaarrttiittiioonn ppeerr mmoosstt ccrriittiiccaall ffaaccttoorr aaffffeeccttiinngg %% FFiinneess All Rows Count 31 LogWorth Difference 1. Most Significant parameters affecting MMeeaann 33.666666112299 11.66223322555588 11.9988559966 Std Dev 2.4278793 %Fines are Slit Temp and Exhaust Temp Slit Temp Actual (°C) -max<74.3 Slit Temp Actual (°C) -max>=74.3 2. Lower Slit Temperature (<74˚C)and Count 19 LogWorth Difference Count 12 Mean 2.8973684 0.6352248 1.21364 Mean 4.8833333 lloowweerr EExxhhaauusstt TTeemmppeerraattuurreess ((<<4444˚CC)) Std Dev 2.1367027 Std Dev 2.4430061 will generate less % Fines Exhaust Temp-AVG<44.4 Exhaust Temp-AVG>=44.4 Count 11 Count 8 Mean 2.3863636 Mean 3.6 Std Dev 2.1165362 Std Dev 2.0894223 PPootteennttiiaall DDOOEE FFaaccttoorrss ffoorr ffuuttuurree ssiimmiillaarr products/processes or for further process fine-tuning ‘All examples are for illustration purposes only’ QbD Guide for Generics:   Step 3 - Plan the right/relevant Experiments Efficient and Informative DOE: CQAs= f (CPPs, CMAs)  How do we stay efficient o Effective Prior Knowledge Utilization  WWhhaatt ddoo wwee vvaarryy aanndd wwhhaatt ddoo wwee ffiixx??  What target and range do we evaluate and why?  What statistical model do we use and why? (Can we assess what interactions are most likely to occur? Can we assess what factors would have non linear relationship with the response?) o Modern DOE techniques for efficient yet powerful designs (D- Optimum, I-Optimum) o Monte Carlo Simulations to assess the process robustness using historical data to assess expected variabilityy LLeett’’ss ttaakkee aa ttyyppiiccaall mmaannuuffaaccttuurriinngg pprroocceessss ffoorr ttaabblleettss   aass aann eexxaammppllee ttoo ssttaarrtt wwiitthh…… WWeett GGrraannuullaattiioonn FFlluuiidd BBeedd DDrryyiinngg MMiilllliinngg BBlleennddiinngg CCoommpprreessssiioonn How many potentially Critical Process Parameters do we need to assess? 5? 10? 25?

Description:
Inna Ben Anat QbD Strategy Leader Teva Pharmaceuticals. R&D. IFPAC. JAN Three Core Components of QbD and Generic Industry: How Do They
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.