ebook img

Purification of an Angiotensin-Converting Enzyme-Lik PDF

16 Pages·2016·1.86 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Purification of an Angiotensin-Converting Enzyme-Lik

toxins Article Insights into the Hypertensive Effects of Tityus serrulatus Scorpion Venom: Purification of an Angiotensin-Converting Enzyme-Like Peptidase DanielaCajado-Carvalho1,AlexandreKazuoKuniyoshi1,BrunoDuzzi1,LeoKeiIwai2, ÚrsulaCastrodeOliveira2,InáciodeLoiolaMeirellesJunqueiradeAzevedo2, RobertoTadashiKodama1andFernandaVieiraPortaro1,* 1 ImmunochemistryLaboratory,ButantanInstitute,SãoPauloCEP05503-900,SP,Brazil; [email protected](D.C.-C.);[email protected](A.K.K.); [email protected](B.D.);[email protected](R.T.K.) 2 SpecialLaboratoryforAppliedToxinology,ButantanInstitute/CenterofToxins,Immune-ResponseandCell Signaling(CeTICS),SãoPauloCEP05503-900,SP,Brazil;[email protected](L.K.I.); [email protected](Ú.C.d.O.);[email protected](I.d.L.M.J.d.A.) * Correspondence:[email protected];Tel.:+55-11-2627-9716 AcademicEditor:RonaldA.Jenner Received:7October2016;Accepted:16November2016;Published:24November2016 Abstract: The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomedpatientsmostlysufferneurotoxicmanifestations,othersymptoms,suchashypertension, cannotbeexclusivelyattributedtoneurotoxins. Omicsanalyseshavedetectedplentifulamountsof metalloproteasesinT.serrulatusvenom.However,therolesplayedbytheseenzymesinenvenomation arestillunclear. Endeavoringtoinvestigatethefunctionsofscorpionvenomproteases,wedescribe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified fromT.serrulatusvenom. Thecrudevenomcleavednaturalandfluorescentsubstratesandthese activitieswereinhibitedbycaptopril. Regardingtheserumneutralization,thescorpionantivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completelyinhibitedthevenomcleavageaction,evenathigherdoses.ACE-likewaspurifiedfromthe venomafterthreechromatographicstepsanditsidentitywasconfirmedbymassspectrometricand transcriptomicanalyses. BioinformaticsanalysisshowedhomologybetweentheACE-liketranscript sequencesfromTityusspp. andhumantestisACE.Thesefindingsadvanceourunderstandingof T.serrulatusvenomcomponentsandmayimprovetreatmentofenvenomationvictims,asACE-like maycontributetoenvenomationsymptoms,especiallytheresultinghypertension. Keywords: ACE-like;Tityusserrulatusvenom;proteases;antivenom;hypertension 1. Introduction AccordingtoBrazil’sMinistryofHealth, since2007scorpionstingshavebeenthemainform ofenvenomationbyanimalsinthiscountry. AnepidemiologicalsurveyconductedbytheMinistry of Health shows that, between 2010 and 2013, cases of scorpion envenomation represent 49% of poisoningsbyvenomousanimalsinBrazil, surpassingthosebysnakes(17%)andspiders(18.5%). This scenario is mainly attributed to the proliferation of Tityus serrulatus scorpions, synanthropic animalsthatreproducebyparthenogenesis[1]andwhosepotentvenomcontributestotheoccurrence ofcriticalclinicalenvenomation. Thus,T.serrulatusvenom(Tsv)isoneofthemoststudiedBrazilian scorpionvenoms[2]. Toxins2016,8,348;doi:10.3390/toxins8120348 www.mdpi.com/journal/toxins Toxins2016,8,348 2of16 NeurotoxinsinTsvcausemostoftheenvenomationsymptomsbypromotingneurotransmitter release from the autonomic nervous system and the adrenal medulla onto several organs [3]. Theseeventsresultinclinicalmanifestationssuchasrestlessness,excessivesalivation,lacrimation, hypertensionfollowedbyhypotension,heartfailure,andcardiogenicshock,amongothers. Notall symptoms,however,areattributedtoadirectactionofspecificneurotoxinsonorgans[4],andrecent studies suggest that other molecules may contribute to these effects [5–7]. Metallopeptidases, hyaluronidase, biogenic amines, antimicrobial peptides (AMP), and other oligopeptides are also presentinTsv[7–9];however,theroleofthesemoleculesinenvenomationisstillunclear. Peptidases present in animal venoms often play an important role in the envenomation syndrome, astheycancleaveproteinsandpeptidesthatarekeyfactorsforphysiologicalsystems. Forinstance,insnakevenoms,serinepeptidasescanaffectthecoagulationcascadeandkallikrein–kinin system,whilemetallopeptidasestargetcomponentsofbloodcoagulationandplateletaggregation, bothresultinginanimbalanceofthehemostaticsystem[10,11]. Althoughsnakevenompeptidases are the most studied, due to their abundance, proteolytic activity has recently been described in jellyfish[12],conesnail[13],wasp[14],spider[15],andscorpion[16]venoms. Thusfar,metallopeptidasesandhyaluronidasescomprisetheonlyclassesofenzymespurified andwiththeirfunctionalactivitiesdeterminedinTityusspp. venoms[6,9],althoughtranscriptomic studieshaveidentifiedotherclassesofenzymesaswell[8,17].Studiesfromourgrouphaveshownthat Tsvproteasescleavemammalpeptidesinvitro,andthatthisactivityisinhibitedbyhighconcentrations ofcommerciallyavailableantivenomsusedinthetreatmentofenvenomedpatientsinBrazil[16,18]. Moreover,endopeptidases,aminopeptidases,andcarboxypeptidasesthatcleaveendogenouspeptides from the Tsv and inactivate human bioactive peptides have been detected [18,19]. One of these, antarease,isametallopeptidaseubiquitousinthevenomofscorpionsoffamilyButhidae[20],towhose actionthepancreatitisobservedinmiceaftervenominjectionisattributed[21]. The human somatic angiotensin-I converting enzyme (sACE, EC 3.4.15.1) is a dipeptidyl carboxypeptidasethatplaysacrucialroleinbloodpressureregulationthroughtherenin–angiotensin (RAS)andkalikrein–kinin(KKS)systems. sACEconvertsangiotensinIintoangiotensinIIinRAS, andinactivatesbradykinininKKS,leadingtobloodpressureincrease. sACEhastwohighlysimilar, independent catalytic domains, the N- and C-terminal domains. Although both have proteolytic activity,regulationofbloodpressuremostlydependsontheC-terminaldomain,asitisresponsible for producing angiotensin II [22]. A smaller isoform of sACEis also present in mammals: known as testicular ACE (tACE), it contains only the C-terminal domain [23,24]. The same gene encodes bothsomaticandtesticularACE[23,25]buttACEisonlyfoundafterpubertyinmalegerminalcells, whereitparticipatesinspermmaturation,incontrastwiththeconstantandwideexpressionofsACE thatactsalloverthebody[26]. ACE-likeenzymesarehighlyconserved,havingalsobeendetectedininsects,wheretheyplay aroleinfeeding,reproduction,andtheproductionofpeptidehormonesandneurotransmitters[27]. Also, functional ACE-like activity was detected in animal venoms of the fish-hunting cone snail [13], vampire snail [28], and solitary endoparasitic wasp [14]. In scorpions, ACE-like peptidasesweredetectedbytranscriptomeanalysisinHottentottajudaicus[29],Tityusstigmurus[30], andTityusbahiensis[17]venoms. HerewedescribeandcharacterizeforthefirsttimeanAngiotensinI-ConvertingEnzyme-like peptidaseactivityinTityusserrulatusvenomandtheevaluationofcommerciallyavailableantivenoms toneutralizeit. WeusedproteolyticactivityassaystodetectanACE-likepeptidase,thenpurifiedand confirmeditsidentitybytrypticdigestion/massspectrometricandtranscriptomicanalysis. Thisreportmaycontributetoourunderstandingoftheroleofproteasesfromscorpionvenomsin theenvenomationprocess,asanACE-likepeptidasemaycontributetothehypertensionobservedin humanvictims. Toxins2016,8,348 3of16 Toxins 2016, 8, 348   3 of 16  22.. RReessuullttss  22..11.. FFRREETT SSuubbssttrraatteess SSppeecciiffiicc ffoorr CCaarrbbooxxyy‐- aanndd EEnnddooppeeppttiiddaasseess oonn TTssvv  WWee ffiirrsstt eevvaalluuaatteedd TTssvv aaccttiivviittyy wwiitthh ppeeppttiiddaassee iinnhhiibbiittoorrss,, uussiinngg ttwwoo fflluuoorreesscceenntt ssuubbssttrraatteess: : AAbbzz‐-FFRRKK((DDnnpp))PP‐-OOHH, ,wwhhiicchh  wwaass  ddeessiiggnneedd  ffoorr  AACCEE  ssttuuddiieess  [[3311]],,  aanndd  AAbbzz‐-GGGGFFLLRRRRVV‐-EEDDDDnnpp, , hhoommoollooggoouuss ttoo tthhee ddyynnoorrpphhiinn 11––1133 sseeqquueennccee aanndd pprreevviioouussllyy ddeetteerrmminineedd aass ssuubbssttrraattee ffoorr TTssvv  eennddooppeeppttiiddaasseess [[1188]].. RReessuullttss aarree pprreesseenntteedd iinn FFiigguurree 11..  Abz-FRK(Dnp)P-OH Abz-GGFLRRV-EDDnp 100 80 ) % ( 60 n o i t bi 40 hi n I 20 0 Captopril BPP 10c P M SF antroline EDTA n e h p 0- 1 1,   Figure 1. Fluorimetric assays for carboxy- and endopeptidases activities on Tsv using peptidase Figure 1. Fluorimetric assays for carboxy‐ and endopeptidases activities on Tsv using peptidase  inhibitors. Captopril (100 nM), BPP 10c (16 µM), EDTA (50 mM), 1,10-phenantroline (2 mM), inhibitors. Captopril (100 nM), BPP 10c (16 μM), EDTA (50 mM), 1,10‐phenantroline (2 mM), PMSF (2  PMSF(2mM)weretestedonthewholeTityusserrulatusvenom(1µg)inafluorometricassaywith mM) were tested on the whole Tityus serrulatus venom (1 μg) in a fluorometric assay with  Abz-FRK(Dnp)P-OH(darkgrey)andAbz-GGFLRRV-EDDnp(lightgrey).Thereactionsoccurredin A10b0z‐mFRMKT(Drisn,p5)0P‐mOMH N(daaCrkl, g10reµyM) aZndn CAlbzb‐uGfGfeFr,LpRHRV7.‐0EaDtD37np◦C (l.iEghxpt egrriemy)e.n Ttshew reeraecdtioonnes ionccduurprelidca itne . 2 1T0h0e mSDM oTfrkisi,n 5e0ti mcrMes uNltasCiln, 1e0a cμhMca ZsenCwla2 sbunfefveer,r pgHre a7t.e0r atth 3a7n °5C%. Eoxfpthereimvaelnutes owbetarein deodn.e in duplicate.  The SD of kinetic results in each case was never greater than 5% of the value obtained.  Although only metallopeptidases were detected in Tsv (due to inhibition of EDTA and Although  only  metallopeptidases  were  detected  in  Tsv  (due  to  inhibition  of  EDTA  and  1,10-phenantroline),weobservedthatdifferentproteasesactoneachsubstrate.ForAbz-FRK(Dnp)P-OH, 1,10‐phenantroline),  we  observed  that  different  proteases  act  on  each  substrate.  For  thetwoclassicalACEinhibitors,captopril(100nM)andBPP10c(16µM),significantlyinhibitedTsv Abz‐FRK(Dnp)P‐OH, the two classical ACE inhibitors, captopril (100 nM) and BPP 10c (16 μM),  activity(98%and90%,respectively),whileAbz-GGFLRRV-EDDnphydrolysiswasnotaffectedby significantly inhibited  Tsv  activity  (98%  and  90%,  respectively),  while  Abz‐GGFLRRV‐EDDnp  theseinhibitorsatthesameconcentrations. However,PMSF(2mM)hadnoeffectontheactivityof hydrolysis was not affected by these inhibitors at the same concentrations. However, PMSF (2 mM)  thevenomonanyfluorescentsubstratestested. Thus,itseemsthatAbz-GGFLRRV-EDDnpiscleaved had no effect on the activity of the venom on any fluorescent substrates tested. Thus, it seems that  mainlybymetalloendopeptidasesandAbz-FRK(Dnp)P-OHbymetallodipeptidylcarboxypeptidases. Abz‐GGFLRRV‐EDDnp is cleaved mainly by metalloendopeptidases and Abz‐FRK(Dnp)P‐OH by  metallo dipeptidyl carboxypeptidases.  2.2. InVitroSerumNeutralizationAssaysUsingAbz-FRK(Dnp)P-OHasSubstrate 2.2. InW Veittreos Steedrunmin Needuitfrfaelrizeanttiocno Ancsesanytsr aUtisoinngs Aofbza‐rFaRchKn(Didn(pA)PA‐OV)Ha ansd Ssucbosrtrpaitoen  (SAV)antivenomsto determinetheirefficacyinneutralizingTsvhydrolysisofAbz-FRK(Dnp)P-OH(Figure2). We tested nine different concentrations of arachnid (AAV) and scorpion (SAV) antivenoms to  SAVpartiallyinhibitedtheactivityevenatlowvenom:antivenomratios,whereasAAVstarted determine their efficacy in neutralizing Tsv hydrolysis of Abz‐FRK(Dnp)P‐OH (Figure 2).  inhibiting Tsv at a higher dose, after 25 µg of antivenom (1:25), but also reached higher levels of inhibitionthanSAVatconcentrationsof1:500µg. NeitherantivenomfullyneutralizedTsvactivityat thehighestdosetested(1:1000),withinhibitionreaching94%forSAVand98%forAAV. Toxins2016,8,348 4of16 Toxins 2016, 8, 348   4 of 16  Toxins 2016, 8, 348   4 of 16  SAV AAV SAV AAV 100 100 80 80 ) %) % on (n ( 6600 io nhibithibiti 4400 In I 20 20 0 0 1 2 0 5 0 0 0 0 0 1:1:1 1:1:2 1:1:110 1:1:225 1:1:550 1:1:11000 1:1:22550 1:1:55000 1:1:1100000 g venom:g antivenom g venom:g antivenom     FFFiigigguuurrreee  222.. . IInInn  vvviititrtrrooo  ssseeerrruuummm  nnneeeuuuttrtrraaallilizizzaaattitioioonnn  oooff f AAAbbbzzz‐-F‐FFRRRKKK((D(DDnnnppp))P)PP‐-O‐OOHHH  hhhyyydddrrrooollylyysssiisiss  bbbyyy  TTTsssvvv  uuusssiininnggg  ssscccooorrrpppiioioonnn   ((SSAAVV)) aanndd aarraacchhnniidd ((AAAAVV)) ccoommmmeerrcciiaall aannttiivveennoommss.. TThhee vveennoomm wwaass iinnccuubbaatteedd ffoorr 3300 mmiinn aatt rroooomm  (SAV) and arachnid (AAV) commercial antivenoms. The venom was incubated for 30 min at room  tteemmppeerraattuurree wwiitthh nninineec oconncecnentrtartaitoinonsso foafn atinvteivneonmom(w (ewigehitgrhatt iroatoifo voefn ovmen:aonmti:vanentiovmen)—om1):1—;11::21;; 11:1:20;;  temperature with nine concentrations of antivenom (weight ratio of venom:antivenom)—1:1; 1:2;  11::1205;; 11::5205;; 11::15000; ;11:1:20500; ;11::255000;, 1a:n5d001,: 1a0n0d0 —1:1a0n0d0—theanndth tehflenu otrhees cfelunotrseusbcsetnrta tseuwbsatsraatde dwedas. Tahdedereds.u Tlthies  1:10; 1:25; 1:50; 1:100; 1:250; 1:500, and 1:1000—and then the fluorescent substrate was added. The  reexspurlet sisse edxapsre%ssiendh aibs it%io innhofibpiteipotni doafs peeapcttiidvaitsye iancttihveitvye inno tmhe( %ve)n.oTmhe (r%es).u Tlthree prerseuseltn rtsepthreesmenetas nthoef  result is expressed as % inhibition of peptidase activity in the venom (%). The result represents the  mtweoanin odfe tpweon dinednetpexenpdereinmt eenxtps.erTihmeeSnDts.o Tfhkein SeDti corfe ksiunletstiicn reeascuhltsc ainse ewacahs cnaesvee wrgarse nateevretrh garnea5%tero tfhtahne  mean of two independent experiments. The SD of kinetic results in each case was never greater than  5v%al uoef tohbet avianleude. obtained.  5% of the value obtained.  2.3. ESSfAfAeVcVt po pfaaCrrthtiailaolrllyliyd ie ninIhohnibibCitioteenddc te thnheter aa atcictotinviviotityny eT evsvveenan na adtt sl olAowCw Ev veennoomm:a:annttiviveennoomm r raattioioss, ,w whheerreeaass A AAAVV s sttaarrtteedd   inhibiting Tsv at a higher dose, after 25 μg of antivenom (1:25), but also reached higher levels of  inhibiting Tsv at a higher dose, after 25 μg of antivenom (1:25), but also reached higher levels of  AschlorideionsareknowntoaffectACEactivity[32],wecomparedTsvandACEhydrolysisof inhibition than SAV at concentrations of 1:500 μg. Neither antivenom fully neutralized Tsv activity  tihnehAibbitzio-FnR tKh(aDn nSpA)PV- OatH cosuncbesntrtartaetiionntsh oefp 1r:e5s0e0n μcego. fNdeiiftfheerer natnCtilv−encoonmc efnutlrlyat nioenustr(aFliigzuerde T3s)v. activity  at the highest dose tested (1:1000), with inhibition reaching 94% for SAV and 98% for AAV.  at the highest dose tested (1:1000), with inhibition reaching 94% for SAV and 98% for AAV.  AsshowedinFigure3,bothenzymeswerealreadyactiveintheabsenceofNaCl,withhigher proteolytic activities observed as NaCl concentrations increased. At 10 mM NaCl, Tsv and ACE 2.3. Effect of Chloride Ion Concentration on Tsv and sACE  2.3. Effect of Chloride Ion Concentration on Tsv and sACE  activities increased by 15% and 25%, respectively, and, at the highest NaCl concentration tested (50 mAAMss c) chhhlyolodrrirdiodele yi oisonisnss oa afrreAe k bknzno-oFwwRnnK t (toDo a nafffpfee)cPctt -A OACHCEEb a aycctTtivisvvitityiyn [ [3c3r22e]],a ,ws weede c cbooymmmppaoarrreeeddt Th Tsasvnv a 3an5nd%d A ,ACaCnEEd h hayyrdodruroonlyldyssi4sis6 o %off   tbthhyee AA ACbbEzz‐.‐FFRRKK((DDnnpp))PP‐‐OOHH s suubbssttrraattee i nin t thhee p prreesseennccee o off d dififffeerreenntt C Cl−l −c coonncceennttrraattioionnss ( (FFigiguurree 3 3)). .      Figure 3. Effect of chloride ions concentration on (A) angiotensin-converting enzyme (ACE) and Figure 3. Effect of chloride ions concentration on (A) angiotensin‐converting enzyme (ACE) and (B)  Figure 3. Effect of chloride ions concentration on (A) angiotensin‐converting enzyme (ACE) and (B)  (B)Tityusserrulatusvenom.Forboth,Abz-FRK(Dnp)P-OHhydrolysiswasdeterminedinTris100mM, Tityus serrulatus venom. For both, Abz‐FRK(Dnp)P‐OH hydrolysis was determined in Tris 100 mM ,  ZTnitCyuls 1se0rrµuMlatubsu vffeenr,omw.i tFhofro buorthd,i fAfebrze‐nFtRcKo(nDcnepnt)rPa‐tOioHn shyodfrNolayCsils: w0,a1s 0demteMrm, 2in0edm iMn ,Tarnisd 10500 mmMM .,  2 ZTZnhnCeClr2le 2s1 1u00l tμ μrMeMp b rbeuusfeffefnertr,s ,w twhietihtmh f eofoauunrr od dfifitffweferoreeninnt tdc ecoopnnecnceednnetrtnratatiteoixonpnses ro iofm fN eNnaaCtCsl.:l T:0 0h, ,e1 10S0 Dm mMoMf,k ,2 i2n00 em tmicMMr,e ,sa aunnldtds 5 i50n0 m emaMcMh. .cT Tahsheee   result represents the mean of two independent experiments. The SD of kinetic results in each case  wreassunlte vreeprrgerseeanttesr tthhea nm5e%ano fotfh tewvoa liunedeopbetanidneendt. experiments. The SD of kinetic results in each case  was never greater than 5% of the value obtained.  was never greater than 5% of the value obtained. Toxins2016,8,348 5of16 2.4. HydrolysisofACENaturalSubstratesbyTsv Angiotensin I and bradykinin were incubated with Tsv in the classical ACE working buffer, 100mMTris,50mMNaCl,10µMZnCl ,pH7.0. Afterverifying,withreservephasechromatography, 2 that both peptides were substrates for Tsv, we manually collected the products of hydrolysis and analyzedthembymassspectrometry. Additionally,wedeterminedthespecificactivityofthevenom oneachpeptide,includinghemopressin,anddeterminedthecleavagesites(Table1). Table1.HydrolysisofbiologicallyactivepeptidesbyTityusserrulatusvenomandreleasedfragments. Peptide FragmentSequence FragmentIdentification MW VenomSpecificActivity(µM/µg/min) DRVY Ang(1–4) 551.2 IHPFHL Ang(5–10) 762.4 HPFHL Ang(6–10) 649.3 AngiotensinI DRVYIHP Ang(1–7) 898.4 0.050 DRVYIHPF AngII 1045.4 RVYIHPF AngIII 930.5 FHL Ang(8–10) 415.2 RPPGF BK(1–5) 572.3 Bradykinin RPPGFSP BK(1–7) 756.3 0.045 PGFSPFR BK(3–9) 806.4 PVNFKFL Hemo(1–7) 863.4 PVNFKF Hemo(1–6) 750.4 Hemopressin PVNFK Hemo(1–5) 603.3 0.400 KFLSH Hemo(5–9) 630.35 FLSH Hemo(6–9) 502.25 Assayswerecarriedoutin100mMTrisbuffercontaining50mMNaCl,10µMZnCl2,pH7.0,at37◦C,inafinal volumeof100µL.Theresultsareshownasthemeanofthreeindependentexperiments.TheSDofkineticwas nevergreaterthan5%ofthevalueobtained. Hemopressin was the best substrate for the whole venom (0.40 µM/µg/min), followed by angiotensinI(0.05µM/µg/min)andbradykinin(0.045µM/µg/min). Oneofthefragmentscollected fromangiotensinIcorrespondedtoangiotensinII,duetotheremovalofHis9-Leu10. Otherfragments werealsoformedfromangiotensinIhydrolysis,suchasAng ,Ang ,Ang ,andAng , (1–4) (5–10) (1–7) (8–10) probablyduetoendopeptidaseactivity;andAngIIIandAng ,probablyduetoaminopeptidase (6–10) activity. Bradykinin hydrolysis by the venom formed the fragments BK , BK , the expected (1–7) (1–5) productsofACE-likeactivity,andBK .Hemopressincleavagesitesweredeterminedpreviously[18], (3–7) butthehydrolysisrateincreased5.6timeswhenthebuffercontaining10µMZnCl wasused. 2 2.5. InhibitionAssayonReversePhaseChromatography As new substrates and hydrolysis rates were observed for Tsv when using the ACE buffer, weevaluatedinhibitionbycaptopril,apotentandspecifichumanACEinhibitor,andbyEDTA(Table2). Table2.InhibitionofTsvactivityonbioactivepeptidesbycaptoprilandEDTA. InhibitoryActivity(%) Peptide EDTA Captopril100nM Captopril1µM Angiotensin-I 100 8.2 48.6 Bradykinin 100 36.3 60.0 DynorphinA 100 0.0 1.8 Hemopressin 100 37.8 8.9 Experimentsweremadeusing100mMTris,50mMNaCl,10µMZnCl2buffer,pH7.0at37◦CwithTsv(1µg), at37◦C,using30µMofeachbiologicallyactivepeptidesubstrate.Theincubationsvariedaccordingtothe particularityofeachsubstrate,asdescribedinSection4.6.Theresultsshownarethemeanofthreeindependent experiments.TheSDofkineticwasnevergreaterthan5%ofthevalueobtained. Toxins 2016, 8, 348   6 of 16  Table 2. Inhibition of Tsv activity on bioactive peptides by captopril and EDTA.  Inhibitory Activity (%) Peptide  EDTA Captopril 100 nM  Captopril 1 μM  Angiotensin‐I  100  8.2  48.6  Bradykinin  100  36.3   60.0  Dynorphin A  100  0.0  1.8  Hemopressin  100  37.8  8.9  Experiments were made using 100 mM Tris, 50 mM NaCl, 10 μM ZnCl2 buffer, pH 7.0 at 37 °C with  Tsv (1 μg), at 37 °C, using 30 μM of each biologically active peptide substrate. The incubations varied  according to the particularity of each substrate, as described in Section 4.6. The results shown are the  Toxins2016,8,348 6of16 mean of three independent experiments. The SD of kinetic was never greater than 5% of the value  obtained.  EDTAfullyinhibitedtheactivityofTsvonallsubstrates.Captopril,ineitherofthetwoconcentrations EDTA fully inhibited the activity of Tsv on all substrates. Captopril, in either of the two  tested, failed to inhibit the cleavage of dynorphin 1–13 in any concentration, which was expected, concentrations tested, failed to inhibit the cleavage of dynorphin 1–13 in any concentration, which  asasimilarresultwasobservedwiththeanalogfluorescentsubstrate,Abz-GGFLRRV-EDDnp(Figure1). was  expected,  as  a  similar  result  was  observed  with  the  analog  fluorescent  substrate,  Ontheotherhand,captoprilinhibitedbradykininandangiotensinIhydrolysesinadose-dependent Abz‐GGFLRRV‐EDDnp  (Figure  1).  On  the  other  hand,  captopril  inhibited  bradykinin  and  manner(Table2). Hydrolysisofhemopressinwasalsostronglyinhibited(37.8%)by100nMcaptopril, angiotensin I hydrolyses in a dose‐dependent manner (Table 2). Hydrolysis of hemopressin was also  butlesssowithahigherdose(1µM)ofthisinhibitor. TheRP-HPLCprofileofhemopressinhydrolysis strongly inhibited (37.8%) by 100 nM captopril, but less so with a higher dose (1 μM) of this  by Tsv (Figure 4), shows that, when captopril was present (in both doses), one of the products inhibitor. The RP‐HPLC profile of hemopressin hydrolysis by Tsv (Figure 4), shows that, when  (PVNFKFL)wasnotformed,indicatingthatthedipeptidylcarboxypeptidaseactivityofthewhole captopril was present (in both doses), one of the products (PVNFKFL) was not formed, indicating  venom was abolished. Nevertheless, the other products (PVNFK and FLSH) were not affected by that the dipeptidyl carboxypeptidase activity of the whole venom was abolished. Nevertheless, the  thisinhibitor. other products (PVNFK and FLSH) were not affected by this inhibitor.    FFiigguurree 44.. HHememoporpersessisni nhyhdyrdolryoslyiss bisy bTyityTuisty suersruselartruusl avteunsovme noonm RPo‐nHPRLPC-H. (PAL)C H.e(mAo)pHreesmsionp, 3re0s μsiMn,,  30 µM, without venom; (B) hemopressin after 2 h incubation with Tsv (1 µg), and its fragments; without venom; (B) hemopressin after 2 h incubation with Tsv (1 μg), and its fragments; (C) and (D)  (C,D) hemopressin hydrolyzed by Tsv in presence of 100 nM and 1 µM of captopril, respectively, hemopressin hydrolyzed by Tsv in presence of 100 nM and 1 μM of captopril, respectively, showing  sthhoawt tihneg pthroadttuhcet p(PrVodNuFcKt(FPLV) NisF nKoFt Lfo)rimsneodt. fEoxrpmeerdim.Eenxptse wrimereen dtsonwee irne dduonpelicinatde.u plicate. 22.6.6.. PPuurriifificcaattiioonn ooffA ACCEE-‐LLiikkeeP Peeppttididaasseef rfroommT T..s seerrrurulalatutussV Venenomom  IInn oorrddeerrt toop puurriiffyy tthhee AACCEE-‐lliikkee ppeeppttiiddaassee pprreesseenntt iinn TTssvv,,w weep peerrfoforrmmeeddt hthrreeeec chhrroommaattooggrraapphhiicc  sstteeppsst otoo botabitnaianh oam  hoogmenoegoeunseaonuds aacntidv eaecntzivyem ee.nFziyrmst,et.h eFiwrsht,o ltehTes vwwhaoslea pTpslive dwtoasa naHppPlLieCd- DtEo AaEn  cHolPuLmCn‐,DaEnAdEth ceoAluCmEn-l,i kaendac tthivei tAyCwEa‐sliikdee nactitfiiveidty( 7w7aUs Fi/dµengt/ifmieidn )(i7n7 fUraFc/tμiogn/m1,inw)h iinc hfrdaicdtionnot 1i,n wtehraiccht  wdiitdh nthoet cinoltuermacnt (wdaittha nthoet schooluwm).nT h(deant,af rnaoctti osnho1ww).a sThloeand, efdraocntitoona 1D wioal-s3 0lo0acdoeldu monnt,ofr oam Dwiohl‐i3c0h0  fcroaclutimonns, wferroemc ollwechtiecdh (Ffirgaucrteio5n,sp anweelrAe )acnodllescctreede ne(dFibgyurAe bz5-F, RKpa(Dnenlp  )PA-)O  Hanhdy drsoclryeseins.edSi ncbey  fArabczti‐oFnRFK1(-D2nsph)oPw‐OedHt hehybdesrtohlyysdisr.o lySsiniscrea tefrsa(c8t8ioUnF /Fµ1g‐2/ msihno),witedw asthfeu rtbheesrt frahcytdiornoelydswis ithraPteAs- C(M88  iUonF/eμxgch/maning)e, ciht rwomasa tfougrrtahperh yf.raAcfttieorntehdis wlaistths tPeAp,‐CwMeo ibosne revxecdhoannegea ccthivreomfraactotigorna,pphryes. eAntfitnegr tahsiisn glalset  bsatenpd, owfe7 0obksDerav(eFdig ounree a5c,tpivaen eflraBc)t,iowni,t hpraesspenectiinfigc aac stiinvgitlye obfa2n2d0 oUf F7/0µ kgD/am (iFnigounreth 5e, FpRanEeTl sBu)b, wstritahte a.  Isnptehceiffiicn aalcctihvriotym aotfo g22ra0p UhyF/sμtegp/,mthine pounr itfhicea tFioRnEfTa cstuorbsotbrtaatien. eIdn wthase 2f2in.9awl cithhroamyiaetlodgorfap1%hy( Tsatbeple, St1h)e.  puriTfihcaetiporno ftaecintorc oonbtteanintefdro wmast h22e.9S DwSit-hP Aa GyiEeldb aonf d1%w (aTsaebxletr Sa1c)t.e d and subjected to MS/MS for peptidefingerprintanalysis. UsingadatabasethatcombinedsequencesrestrictedtoTityusgenus from UNIPROT and the transcript sequences of ACE-like peptidase from Tityus scorpion venom glands, PeaksDB was able to identify, with high confidence (FDR ≤ 1%), two unique ACE-like peptidesfromTityusserrulatus(TserSP00939)(Figure6). Additionally,thepureenzymewasableto convertangiotensinIintoangiotensinII,inadditiontoAbz-FRK(Dnp)P-OH,withspecificactivityof 0.01µM/µg/min(Figure5,panelC). Toxins2016,8,348 7of16 Toxins 2016, 8, 348   7 of 16    Figure5.PurificationofACE-likeenzymefromTityusserrulatusvenom.(A)Fraction1wasfragmented Figure  5. Purification of ACE‐like enzyme from Tityus serrulatus venom. (A) Fraction 1 was  ingelfiltrationDiol-300column,andF1-2wastheonlyfractionabletocleavetheFRETsubstrate. fragmented in gel filtration Diol‐300 column, and F1‐2 was the only fraction able to cleave the FRET  SDS-PAGEshowedaseparationoflowmolecularweightbands. (B)ProfileofthefractionF1-2on substrate. SDS‐PAGE showed a separation of low molecular weight bands. (B) Profile of the fraction  acationexchangecolumn(blackline),withF1-2.7beingthefractionwiththehighestpeptidaseactivity, F1‐2 on a cation exchange column (black line), with F1‐2.7 being the fraction with the highest  andresultinginasingleproteinbandin13%SDS-PAGE.Inordertomaintaintheactivity,aftereach peptidase activity, and resulting in a single protein band in 13% SDS‐PAGE. In order to maintain the  stepthebufferwasimmediatelychangedto100mMTris,50mMNaCl,10µMZnCl buffer,pH7.0, 2 activity, after each step the buffer was immediately changed to 100 mM Tris, 50 mM NaCl, 10 μM  using a 10 kDa molecular weight cutoff membrane. The grey line represents the NaCl gradient. ZnCl2 buffer, pH 7.0, using a 10 kDa molecular weight cutoff membrane. The grey line represents the  (C)ConversionofangiotensinIintoangiotensinIIbythepurifiedACE-likeenzyme.Thedetailsofthe experimentsaredescribedinSection4.8. Toxins 2016, 8, 348   8 of 16  NaCl gradient. (C) Conversion of angiotensin I into angiotensin II by the purified ACE‐like enzyme.  The details of the experiments are described in Section 4.8.  The protein content from the SDS‐PAGE band was extracted and subjected to MS/MS for  peptide fingerprint analysis. Using a database that combined sequences restricted to Tityus genus  from UNIPROT and the transcript sequences of ACE‐like peptidase from Tityus scorpion venom  glands, PeaksDB was able to identify, with high confidence (FDR ≤ 1%), two unique ACE‐like  peptides from Tityus serrulatus (TserSP00939) (Figure 6). Additionally, the pure enzyme was able to  convert angiotensin I into angiotensin II, in addition to Abz‐FRK(Dnp)P‐OH, with specific activity of  Toxins2016,8,348 8of16 0.01 μM/μg/min (Figure 5, panel C).    FFiigguurree 66.. TTryrypptitci cppepeptitdidese sfrformom frfarcatciotino nF1F‐12-.72 .7thtaht amt amtcahtcehde dwiwthi tthhet hperepdriecdteicdt eAdCAEC‐liEk-eli kfreomfro Tm.  sTe.rsreurlrautulast u(Gs(eGneBnaBnakn TksTesreSrPS0P00903993)9 o)botbatianiende dfrformom trtarnanscsrcirpiptotommici caannaalylysissi.s .TThhee ppeepptitdideess wweerree ffoouunndd  uussiinngg PPeeaakkss DDBB wwiitthh FFDDRR ≤≤ 11%%. . 2.7. Sequence Analysis  2.7. SequenceAnalysis We aligned the amino acid sequences of ACE‐like peptidases obtained from transcriptomics  WealignedtheaminoacidsequencesofACE-likepeptidasesobtainedfromtranscriptomicsdata data analysis from Tityus serrulatus, T. obscurus and T. bahiensis with each other and with human  analysisfromTityusserrulatus,T.obscurusandT.bahiensiswitheachotherandwithhumantesticular testicular ACE (Table 3).  ACE(Table3). TTaabbllee 33.. IIddeennttiittyy ((wwhhiittee)) aanndds siimmilialarritiyty( g(grereyy))b betewtweeenenA ACCE-Eli‐kliekefr ofrmomth tehvee vneonmomof oBfr BazrialziailniaTni tTyuitsyusps . sspc osrcpoiropniosnasn adnHdo Hmoomsoa psiaepnisentes stteicstuilcaurlaArC AEC(EA (AAAA6A0661016.111)..1).   TesticularACE Homo  T. serrulatus  T. bahiensis  T. obscurus  Proteins  TesticularACEHomosapiens T.serrulatus T.bahiensis T.obscurus Proteins sapiens (AAA60611.1)  (TserSP00939)  (JAG85170)  (Tobs01141)  (AAA60611.1) (TserSP00939) (JAG85170) (Tobs01141) testicularACE Homo sapiens  testicularACEHomosapiens 39.18%  23.12%  39.18%  (AAA60611.1)    39.18% 23.12% 39.18% (AAA60611.1) T. serrulatus (TserSP00939 )  46.39%  67.21%  90.34% T.serrulatus(TserSP00939) 46.39% 67.21% 90.34% T. bahiensis (JAG85170)  28.16%  67.34%  61.22% T.bahiensis(JAG85170) 28.16% 67.34% 61.22% T obscurus (Tobs01141)  46.53%  92.51%  62.31%  Tobscurus(Tobs01141) 46.53% 92.51% 62.31% The identity with human tACE varied from 23% to 39%; however, the metallopeptidase motif  was Thhigehildye nctointysewrvitehd htuhmroaungthAoCutE  tvhaer iesdpefcroiems 2(F3i%gutroe 39S%1);. hTohwee vAeCr,Et‐hliekme esteaqlluoepnecpetsi doafs eTmityoutisf  swerarsuhlaitguhsl y(TcosenrsSePrv00ed93t9h)r oaungdh oTuittythues sopbescciuersu(sF i(gTuorbesS011)1.4T1h) ehAaCdE  -9l2ik.5e1s%eq uoef nsciemsiolafrTiittyy,u swsherirleu latthues  t(bTasheArSCPE00‐l9i3k9e) asenqduTeintycues oshbsacruerdu s6(2T.o3b1s%01 1a4n1d) h6a7d.3942%.5 1s%imoiflasirmityil awritiyth,w Th.i loebtshceurtbuash AanCdE -Tli.k esesrerquulaetnucse,  rsehsapreecdti6v2e.l3y1.%  and67.34%similaritywithT.obscurusandT.serrulatus,respectively. 3. Discussion 3. Discussion  Using enzymatic assays, protein purification, mass spectrometry analysis, and comparative Using enzymatic assays, protein purification, mass spectrometry analysis, and comparative  studiesofthetranscriptsequencesinthevenomglandsofTityusspp. scorpions,weshowforthefirst studies of the transcript sequences in the venom glands of Tityus spp. scorpions, we show for the  timethepresenceofanACE-likepeptidaseinthevenomofTityusserrulatus. first time the presence of an ACE‐like peptidase in the venom of Tityus serrulatus.  ThevenomcleavesphysiologicallyimportantACEsubstrates,suchasangiotensinI,bradykinin, The  venom  cleaves  physiologically  important  ACE  substrates,  such  as  angiotensin  I,  andhemopressin,andcaptoprilinhibitsthisactivity. Expectedproductsfromthesehydrolyseswere bradykinin, and hemopressin, and captopril inhibits this activity. Expected products from these  observed,suchashemopressin1–7,angiotensinII,BK ,andBK ,consistentwiththeACEspecificity hydrolyses were observed, such as hemopressin 1–7,1 –a5ngiotensi1n–7 II, BK1–5, and BK1–7, consistent with  forthesesubstrates[33,34]. However,thepresenceofotherfragmentsindicatestheparticipationof the ACE specificity for these substrates [33,34]. However, the presence of other fragments indicates  morevenomproteasesinthecleavageofthesesubstrates.Inaddition,Abz-FRK(Dnp)P-OH,asubstrate the  participation  of  more  venom  proteases  in  the  cleavage  of  these  substrates.  In  addition,  specificallydesignedforACE[31],wasanimportanttooltoidentifyandpurifytheACE-likepeptidase Abz‐FRK(Dnp)P‐OH, a substrate specifically designed for ACE [31], was an important tool to  onT.serrulatusvenom,alongwiththesuccessfulACEinhibitionbycaptoprilandBPP10c[31,35]. At the end of the third chromatography step, we observed a single protein band in the silver-stainedgelwithmolecularmassaround70kDathatconvertsangiotensinIintoangiotensinII. Thus, the ACE-like enzyme present in Tsv has a molecular mass similar to tACE. Besides the precursorofACE-likepeptidasebeingsequencedbyRNAsequencing(GenBankTserSP00939)and theidentificationoftheACE-likepeptidasefromT.serrulatusthroughmassspectrometricanalysis, theisoformsequencesarealsopresentintranscriptsfromthevenomglandofT.bahiensis(GenBank JAG85170.1), T. stigmurus [30], and T. obscurus (GenBank Tobs01141 and GenBank Tobs00978) [36]. Thus,thesesequenceshelpedtovalidatethepurificationofthisenzyme,achievingtwouniquepeptides Toxins2016,8,348 9of16 fromT.serrulatus’sACE-likesequence. Moreover,thealignmentindicatedhighhomologybetweenthe ACEsequencesfromBrazilianTityusspeciesandaconservedmetallopeptidasemotifHHEMGHV withhumantACE. The expressive number of ACE-like enzymes described in invertebrates indicates that this metallopeptidase is conserved throughout evolution [27]. Also, in accordance with our results, the ACE-like enzymes in invertebrates include only a C-domain, similar to the human testicular formoftheenzyme. DespitethemanystudieswithACEininvertebrates,naturalsubstratesforthese enzymesareyettobedescribed[27],and,therefore,theirphysiologicalrolestillneedsclarification. Ingeneral,ACE-likepeptidasesshowbroadsubstratespecificity,cleavingalargenumberofpeptides invitro[33]. Theexceptionsarepeptideswithprolineresiduesatthepenultimateposition,suchas BPPs[37]. StudieshaveshownthatmalefruitflieswithmutationsintheACEgenearesterile[38]. Other studiessuggestapossiblephysiologicalroleofACE-likepeptidasesinthemidgutofinvertebrates, butsolelybasedontheirpresenceinthisregion[39,40]. Also,thepresenceofACE-likeenzymesinthe neuropilareaofinsectbrains,andtheabilityoftheenzymetocleaveinsecttachykinin(LomTK-1) invitro,mayindicatethatthisenzymeparticipatesintheprocessingofneuropeptides[41,42]. Inthis scenario,wehypothesizethattheACE-likepeptidasepresentinT.serrulatusvenomcontributestothe abilitytocaptureorkillprey. Moreover, the presence of this enzyme in the venom may be related to forming endogenous peptidesinTsv,sinceaproteomicstudyidentifiedpost-translationalmodificationsoftoxinsinthis venomandshowedthatabout80%ofthevenommoleculesaredegradedbyendogenouspeptidases, particularlyaminoandcarboxypeptidases[19]. Also, arecentreportfromourgroupshowedthat metallocarboxypeptidasescontributetoinactivateaseriesofhumanbioactivepeptides[18]. Lastly, we cannot exclude the involvement of this carboxypeptidase in the envenomation. AccordingtoSafavi-Hemamiandcollaborators(2013),whodescribedanangiotensinI-converting enzymeinthevenomofconesnails,thisenzymemaypromotevasoconstrictionofbloodvesselsatthe stingsitebyangiotensinII,alongwithcatecholamine[13]. Infact,animalsandpatientsenvenomed byscorpionsfromtheButhidaefamilypresentelevationofplasmarenin–angiotensinactivityand, consequently,anincreaseofangiotensinII[43,44]. Thisobservationmight,atleastinpart,beexplained by the action of the venom ACE-like enzyme, as we showed here that it is capable of releasing angiotensinII,andvictimsofTityusserrulatusstingpresenttransienthypertension[45,46]. Untilnow, neurotoxinswereconsideredthemaincauseofhypertensioninstungpatients,duetocatecholamine release[7]. However,asAngIIcanalsostimulatethereleaseofcatecholamines,thismaycontribute synergisticallytothehypertensionobservedinhumanvictims[47,48]. BesidesAngIIformationbythewholevenomandthepurifiedpeptidase,wealsoobservedthat TsvactsonAngI,releasingAngIII,ahypertensivepeptidewithactivitycomparabletoAngII[49]. Differently, Ang 1–7, another product of the action of Tsv, promotes vasodilation, which would seemtobeacontradictoryactionofthevenom. However,envenomedpatientscommonlypresent persistenthypotensionafterthetransienthypertension[7].Heretofore,hypotensioncouldbeexplained by the presence of hypotensins, which are bradykinin-potentiating peptides that do not inhibit human ACE activity [50]. Our results suggest yet another factor that can contribute to this effect. Inaddition,andsinceanimalvenomsaimtodestabilizehomeostasisintheprey,thejointactionof multiplemoleculesinthevenom(neurotoxins,proteases,amongothers)isimportanttocausethe envenomationsyndrome. Furthermore,takingintoaccountthepossibleinvolvementofACE-likeduringtheenvenomation, especially on hypertension, the invitro serum neutralization of Tsv is an important assay. TheantivenomserarepresenttheonlyspecifictherapyavailableandrecommendedbytheWorld Health Organization (WHO) to treat incidents involving animal venoms. In case of scorpion envenomation,theadministrationofeitherscorpion(SAV)orarachnid(AAV)antivenomsisprescribed; inthemostseverecases,itisrecommendedtouse4–6ampoules. OurresultsshowthatSAVandAAV Toxins2016,8,348 10of16 produceddifferentlevelsofneutralization: whileSAVcausedpartialinhibitionatlowerdoses,AAV wasslightlymoreefficientatthehighestdoses. TheeffectofthelowerSAVconcentrationisprobably duetoACE-likepeptidasebeingpresentinbothscorpionvenomsusedfortheSAVimmunizationpool (T.serrulatus,50%andT.bahiensis,50%),asisshowninFigureS1,whilethevenomsusedtoobtain arachnidantivenomincludeonlyonescorpionspecies(T.serrulatus,57%),togetherwithtwospider species(PhoneutrianigriventerandLoxoscelesgaucho). Theinhibitionobservedusinghighdosesofboth antivenomscouldbearesultofsomesortofinteractionimpairmentbetweentheACE-likeandthe FRETsubstrateduetothehighnumberofnon-specificantibodies,andthatmightnotrepresentareal neutralizationbytheantivenom. However,theuseofhigherdosesofantivenommaybeinjuriousto patients,asitcancauseadversereactionsknownas“serumsickness”[51]. In summary, here we describe, for the first time, the purification and characterization of ACE-like enzyme in Tityus serrulatus venom, as well as two fluorescent substrates specific for endo-andcarboxypeptidasesinthisvenom. Also, sinceweobservedformationofAngIIinvitro, wehypothesizethatthisenzymemayalsocontributetothehypertensionobservedintheenvenomation syndrome,alongwithothermolecules. Consideringthatscorpionbitesareacriticalpublichealth probleminBrazil,thisstudydemonstratestheimportanceofcharacterizingnewmoleculesrelated toenvenomationprocessesaswellasevaluatingantivenomtherapies. Thehighconcentrationsof commerciallyavailableantivenomsnecessarytopartiallyblocktheACE-likeactivityinTsvmaybe harmfultovictims. 4. MaterialsandMethods 4.1. Reagents Phenylmethanesulfonylfluoride (PMSF), 1,10-phenanthroline, dynorphin 1–13 (Dyn 1–13), hemopressin (hemo), angiotensin I (Ang I), bradykinin (BK), captopril, and rabbit lung somatic angiotensinI-convertingenzyme(ACE)werepurchasedfromSigma-Aldrich(St. Louis,MO,USA). Acetonitrileandtrifluoroaceticacid(TFA)wereacquiredfromJ.T.Baker. Thefluorescentresonance energytransfer(FRET)substratesAbz-GGFLRRV-EDDnpandAbz-FRK(Dnp)P-OH,synthesizedwith automated solid-phase synthesis [52], were kindly provided by Dr. Adriana Carmona, from the DepartmentofBiophysicsofUNIFESP-EPM,SãoPaulo,Brazil. 4.2. VenomsandAntivenoms ThelyophilizedvenomofTityusserrulatus(BatchNo. 2146andbatchNo. 744)wereprovided by the Venom Section of Instituto Butantan, SP, Brazil. The venoms were submitted to a 10 kDa molecularweightcutoff(AmiconUltra-15CentrifugalFilterDevices)andstocksolutionwasprepared in50mMsodiumphosphateand50mMNaCl,pH6.0. Thescorpionandarachnidantivenoms(SAV andAAV,respectively)werefromtheHyperimmunePlasmasProcessingSection,InstitutoButantan, SP,Brazil. TheSAV(batchNo. 0905104/A)andtheAAV(batchNo. 0706121)proteinconcentrations were8.43g/dLand15.4g/dL,respectively. TheantivenomsfromInstitutoButantanareproduced throughhyperimmunizationofhorses,withapoolofT.serrulatus(50%)andT.bahienses(50%)venoms forSAV,andT.serrulatus(57%),Phoneutrianigriventer(21.5%)andLoxoscelesgaucho(21.5%)venoms forAAV. 4.3. FluorescentSubstrate-SpecificforCarboxy-andEndopeptidases,andPeptidaseInhibitors The substrate-specific assay was carried out using 1 µg Tityus serrulatus venom (Tsv) and the fluorescentsubstratesAbz-GGFLRRV-EDDnp(5µM)[18]andAbz-FRK(Dnp)P-OH(4µM),in100mM Tris,50mMNaCl,10µMZnCl buffer,pH7.0. Allreactionsweremonitoredbymeasuringhydrolyses 2 using a fluorimeter (Victor 3™, Perkin-Elmer, Waltham, MA, USA; λem 420 nm and λex 320 nm), at a stable temperature of 37 ◦C. The measurements of peptidase activity were made for 15 min continuously(onereadperminute). ThefluorometricassayswereanalyzedusingGrafit5.0from

Description:
studies have identified other classes of enzymes as well [8,17]. ACE-like enzymes are highly conserved, having also been detected in insects, where they play We tested nine different concentrations of arachnid (AAV) and scorpion (SAV) .. This observation might, at least in part, be explained.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.