Table Of ContentPureInductiveLogic
Pure inductive logic is the study of rational probability treated as a branch of
mathematical logic. This monograph, the first devoted to this approach, brings
togetherthekeyresultsfromthepastseventyyears,plusthemaincontributions
of the authors and their collaborators over the last decade, to present a compre-
hensiveaccountofthedisciplinewithinasingleunifiedcontext.Theexposition
is structured around the traditional bases of rationality, such as avoiding Dutch
Books, respecting symmetry and ignoring irrelevant information. The authors
uncoverfurtherrationalityconcepts,bothintheunaryandinthenewlyemerging
polyadiclanguages,suchasconformity,spectrumexchangeability,similarityand
language invariance. For logicians with a mathematical grounding, this book
providesacompleteself-containedcourseonthesubject,takingthereaderfrom
thebasicsuptothemostrecentdevelopments. Itisalsoausefulreferencefora
wideraudiencefromphilosophyandcomputerscience.
Jeffrey Paris is a professor in the School of Mathematics at the University
of Manchester. His research interests lie in mathematical logic, particularly set
theory,modelsofarithmeticandnon-standardlogics.In1983hewasawardedthe
LondonMathematicalSociety’sJuniorWhiteheadPrizeandin1999waselected
a Fellow of the British Academy in the Philosophy Section. He is the author of
TheUncertainReasoner’sCompanion(CambridgeUniversityPress,1995).
Alena Vencovská received her PhD from Charles University, Prague. She has
heldastringofresearchandlecturingpositionsintheSchoolofMathematicsat
theUniversityofManchester.Herresearchinterestsincludeuncertainreasoning,
nonstandardanalysis,alternativesettheoryandthefoundationsofmathematics.
PERSPECTIVESINLOGIC
ThePerspectivesinLogicseriespublishessubstantial,high-qualitybookswhose
centralthemeliesinanyareaoraspectoflogic.Booksthatpresentnewmaterial
not now available in book form are particularly welcome. The series ranges
from introductory texts suitable for beginning graduate courses to specialized
monographs at the frontiers of research. Each book offers an illuminating
perspectiveforitsintendedaudience.
The series has its origins in the old Perspectives in Mathematical Logic series
editedbythe(cid:2)-Groupfor“MathematischeLogik”oftheHeidelbergerAkademie
der Wissenschaften, whose beginnings date back to the 1960s. The Association
for Symbolic Logic has assumed editorial responsibility for the series and
changed its name to reflect its interest in books that span the full range of
disciplinesinwhichlogicplaysanimportantrole.
ThomasScanlon,ManagingEditor
DepartmentofMathematics,UniversityofCaliforniaBerkeley
EditorialBoard:
MichaelBenedikt
DepartmentofComputingScience,UniversityofOxford
StevenA.Cook
ComputerScienceDepartment,UniversityofToronto
MichaelGlanzberg
DepartmentofPhilosophy,UniversityofCaliforniaDavis
AntonioMontalban
DepartmentofMathematics,UniversityofChicago
MichaelRathjen
SchoolofMathematics,UniversityofLeeds
SimonThomas
DepartmentofMathematics,RutgersUniversity
ASLPublisher
RichardA.Shore
DepartmentofMathematics,CornellUniversity
Formoreinformation,seewww.aslonline.org/books_perspectives.html
PERSPECTIVES IN LOGIC
Pure Inductive Logic
JEFFREY PARIS
UniversityofManchester
ALENA VENCOVSKÁ
UniversityofManchester
association for symbolic logic
UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom
CambridgeUniversityPressispartoftheUniversityofCambridge.
ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof
education,learningandresearchatthehighestinternationallevelsofexcellence.
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781107042308
AssociationforSymbolicLogic
RichardShore,Publisher
DepartmentofMathematics,CornellUniversity,Ithaca,NY14853
http://www.aslonline.org
©AssociationforSymbolicLogic2015
Thispublicationisincopyright.Subjecttostatutoryexception
andtotheprovisionsofrelevantcollectivelicensingagreements,
noreproductionofanypartmaytakeplacewithoutthewritten
permissionofCambridgeUniversityPress.
Firstpublished2015
AcataloguerecordforthispublicationisavailablefromtheBritishLibrary
LibraryofCongressCataloginginPublicationdata
Paris,J.B.(JeffB.),author.
Pureinductivelogic/JeffreyParis,UniversityofManchester;
AlenaVencovská,UniversityofManchester.
pages cm.–(Perspectivesinlogic)
Includesbibliographicalreferencesandindex.
ISBN978-1-107-04230-8(Hardback)
1. Induction(Logic) I. Vencovská,Alena,author. II. Title.
BC91.P372015
161–dc23 2015004107
ISBN978-1-107-04230-8Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof
URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication,and
doesnotguaranteethatanycontentonsuchwebsitesis,orwillremain,accurateor
appropriate.
CONTENTS
Preface.......................................................... ix
Part1. TheBasics
Chapter1. IntroductiontoPureInductiveLogic............ 3
Chapter2. Context............................................ 9
Chapter3. ProbabilityFunctions............................. 11
Chapter4. ConditionalProbability........................... 21
Chapter5. TheDutchBookArgument........................ 25
Chapter6. SomeBasicPrinciples.............................. 33
Chapter7. SpecifyingProbabilityFunctions.................. 39
Part2. UnaryPureInductiveLogic
Chapter8. IntroductiontoUnaryPureInductiveLogic..... 49
Chapter9. deFinetti’sRepresentationTheorem............... 55
Chapter10. RegularityandUniversalCertainty............. 61
Chapter11. Relevance........................................ 69
Chapter12. AsymptoticConditionalProbabilities............ 73
Chapter13. TheConditionalizationTheorem................. 81
Chapter14. AtomExchangeability............................ 87
Chapter15. Reichenbach’sAxiom.............................. 93
Chapter16. Carnap’sContinuumofInductiveMethods...... 99
Chapter17. Irrelevance.......................................103
v
vi Contents
Chapter18. AnotherContinuumofInductiveMethods...... 125
Chapter19. TheNP-Continuum............................... 135
Chapter20. TheWeakIrrelevancePrinciple..................143
Chapter21. EqualitiesandInequalities....................... 155
Chapter22. PrinciplesofAnalogy............................165
Chapter23. UnarySymmetry..................................171
Part3. PolyadicPureInductiveLogic
Chapter24. IntroductiontoPolyadicPureInductiveLogic. 181
Chapter25. PolyadicConstantExchangeability..............183
Chapter26. PolyadicRegularity..............................189
Chapter27. SpectrumExchangeability........................193
Chapter28. Conformity....................................... 199
Chapter29. TheProbabilityFunctionsup¯,L...................205
Chapter30. TheHomogeneous/HeterogeneousDivide........ 213
Chapter31. RepresentationTheoremsforSx..................223
Chapter32. LanguageInvariancewithSx.................... 239
Chapter33. SxwithoutLanguageInvariance.................247
Chapter34. AGeneralRepresentationTheoremforSx....... 257
Chapter35. TheCarnap-Stegmu¨llerPrinciple................267
Chapter36. InstantialRelevanceandSx..................... 269
Chapter37. Equality..........................................275
Chapter38. ThePolyadicJohnson’sSufficientnessPostulate. 285
Chapter39. PolyadicSymmetry................................291
Chapter40. Similarity.........................................303
Chapter41. PIPandAtomExchangeability...................311
Chapter42. TheFunctionsup¯,L ............................... 317
E¯
Contents vii
Chapter43. LessWellTravelledRoads.......................323
Bibliography....................................................327
Index............................................................337
SymbolsandAbbreviations......................................341