Table Of ContentShaopeng Wu
Shumei Cui
Pulsed
Alternators
Technologies
and Application
Pulsed Alternators Technologies and Application
Shaopeng Wu Shumei Cui
(cid:129)
Pulsed Alternators
Technologies
and Application
123
Shaopeng Wu Shumei Cui
Harbin Institute of Technology Harbin Institute of Technology
Harbin, Heilongjiang, China Harbin, Heilongjiang, China
ISBN978-981-33-4223-1 ISBN978-981-33-4224-8 (eBook)
https://doi.org/10.1007/978-981-33-4224-8
©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicencetoSpringerNature
SingaporePteLtd.2021
Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether
thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar
ordissimilarmethodologynowknownorhereafterdeveloped.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom
therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard
tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore
Preface
Pulsed power technology originated from the 1930s and received a rapid devel-
opment after the 1960s. In recent years, it has been applied in many fields.
High-power pulsed power supply is the main component of pulsed power system,
and its growth directly affects the development and application of pulsed power
technology. Pulsed alternators boast comprehensive strengths in the aspects of
energy density and power density. They also integrate inertial energy storage,
electromechanical energy conversion and pulse-shaping as a single element,
therefore attract growing attention in the world in all fields in national economy,
especially in military, as in electromagnetic emission, electromagnetic launch,
microwaveandlaserweapons.TheUSA,Europe,RussiaandChinahavelaunched
a lot of scientific research and invested a large fortune in their researches.
During the accumulation of relative materials, the author collected related lit-
erature from top-notch research institutions in the world, especially in the USA,
with a highlight on the yields and practical experience of Harbin Institute of
Technology over the years in this direction. With pulsed alternators as the core
component, the whole pulsed alternator system is systematically introduced,
includingitsprincipleanddevelopment,itselectromagneticdesign,theanalysison
its thermal management and mechanical performance, the control technology of
pulsed alternator power system, the load and modeling of electromagnetic weapon
and related technologies.
This book was written by Shaopeng Wu and Shumei Cui. In the process of
writing,ourappreciationisattributedtoDr.WeiduoZhao,Dr.XiyuanLi,Dr.Yuan
Wan, Dr. Shaofei Wang, Dr. Songlin Wu, Ms Yu Luo, Mr Jinyang Zhou and
Ms Xinmiao Zhang who contributed greatly in the research of pulsed power
technology and pulsed alternators, and provided the precious information as we
required.
v
vi Preface
Inthe course of writing,our gratefulnessgoesto thedomestic andinternational
literature we referred to, some of which have been detailed after each chapter, but
some of them are still inevitably not mentioned.
Due to the limited knowledge and time, if there exist any errors or mistakes,
experts and readers are more than welcome to comment and criticize.
Authors
Harbin Institute of Technology
Harbin, China
Contents
1 Overview of High-Power Pulsed Power Supply. . . . . . . . . . . . . . . . . 1
1.1 Pulsed Power Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 High-Power Pulsed Power Supply . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Typical Applications of High-Power Pulsed Power Supply . . . . . . 7
1.3.1 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Military Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Different Kinds of High-Power Pulsed Power Supplies. . . . . . . . . 18
1.4.1 Capacitive Energy Storage Pulsed Power Supply. . . . . . . . 18
1.4.2 Inductive Energy Storage Pulsed Power Supply. . . . . . . . . 21
1.4.3 Chemical Energy Storage Pulsed Power Supply. . . . . . . . . 23
1.4.4 Inertial Energy Storage Pulsed Power Supply . . . . . . . . . . 28
1.5 Future Developments in Pulsed Power Technology. . . . . . . . . . . . 34
2 Basic Theories of Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Principles of Pulsed Alternators. . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.1 The Basic Principles of Conventional Generators. . . . . . . . 38
2.1.2 The Basic Structure of the Pulsed Alternators . . . . . . . . . . 39
2.1.3 Working Principle of Pulsed Alternators . . . . . . . . . . . . . . 40
2.1.4 The Working Process of Pulsed Alternators. . . . . . . . . . . . 46
2.2 Type of Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.1 Classification of Compensation. . . . . . . . . . . . . . . . . . . . . 48
2.2.2 Classification of Excitation. . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Development of Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . . . 51
3 Electromagnetic Design of Pulsed Alternators . . . . . . . . . . . . . . . . . 63
3.1 Relationship Among the Main Dimensions, Rotating Speed
and Energy Storage and Power of Pulsed Alternators . . . . . . . . . . 63
3.1.1 Relationship Between Main Dimensions and Energy
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.2 Relationship Between Main Dimensions and Power. . . . . . 65
vii
viii Contents
3.2 Principles for the Selection of Poles and Phases. . . . . . . . . . . . . . 66
3.2.1 Pole Number Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Phase Number Selection. . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 Analysis of the No-Load Magnetic Field of the Pulsed
Alternators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Air-Core Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Iron-Core Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Calculation of Key Parameters of Pulsed Alternators . . . . . . . . . . 73
3.5 Analysis of Discharge Characteristics of Pulsed Alternators . . . . . 76
3.5.1 Analysis of the Process of the Discharging of Pulsed
Alternators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.2 Analysis of Factors Affecting the Discharge Current
of Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.3 Analysis of the Conditions for Self-Excitation
Establishment of Air-Core Pulsed Alternators . . . . . . . . . . 82
3.6 Mathematical Model of Pulsed Alternators. . . . . . . . . . . . . . . . . . 85
3.6.1 Mathematical Model of the Air-Core Pulsed Alternators
in the Phase Coordinate System . . . . . . . . . . . . . . . . . . . . 86
3.6.2 Mathematical Model of Air-Core Pulsed Alternators
Under the Rectangular Axis Coordinate System. . . . . . . . . 89
3.7 Finite Element Modeling Method of the Pulsed Alternators. . . . . . 91
3.7.1 Design Process of Pulsed Alternators . . . . . . . . . . . . . . . . 94
3.8 Case Studies of the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.8.1 Proposal for Double-Axis Compensation. . . . . . . . . . . . . . 95
3.8.2 Equivalent Inductance Analysis of Double-Axis
Compensation Air-Core CPA . . . . . . . . . . . . . . . . . . . . . . 98
3.8.3 The Matching Design of the Double-Axis Compensation
Air-Core CPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.8.4 DesignParametersandSimulationModelofDouble-Axis
Compensation Air-Core CPA . . . . . . . . . . . . . . . . . . . . . . 103
3.8.5 Analysis of Single Pulse Discharging Characteristics
of Double-Axis Compensation Air-Core CPA . . . . . . . . . . 103
3.8.6 Multi-Pulse Discharge Characteristics Analysis
of Double-Axis Compensation Air-Core CPA . . . . . . . . . . 110
4 Thermal Management of Pulsed Alternators . . . . . . . . . . . . . . . . . . 117
4.1 Temperature Field Analysis of Pulsed Alternators. . . . . . . . . . . . . 117
4.1.1 Basic Heat Transfer Theories . . . . . . . . . . . . . . . . . . . . . . 117
4.1.2 Calculation Method for Motor Temperature Field . . . . . . . 119
4.1.3 Air-Core CPA Temperature Field Analysis . . . . . . . . . . . . 121
4.1.4 Example of Air-Core CPA Temperature Field
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Contents ix
4.2 The Computation Basis of the Pulsed Alternator Cooling . . . . . . . 139
4.2.1 The Basis of Computational Fluid Dynamics. . . . . . . . . . . 139
4.2.2 Key Steps in Ansys CFX Flow Field Calculation . . . . . . . 141
4.2.3 Motor Cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.3 Cooling Design of Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . 144
4.3.1 Active Cooling Structure 1. . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.2 Active Cooling Structure 2. . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.3 Comparison of the Two Cooling Structures. . . . . . . . . . . . 150
5 Mechanical Performance of Pulsed Alternators . . . . . . . . . . . . . . . . 153
5.1 Analysis of the Mechanical Performance of Pulsed
Alternators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.1 Mechanical Stress of Pulsed Alternators . . . . . . . . . . . . . . 154
5.1.2 Electromagnetic Stress of Pulsed Alternators. . . . . . . . . . . 155
5.2 Research Methods for Stress of Pulsed Alternators. . . . . . . . . . . . 156
5.2.1 Research Methods for Mechanical Stress. . . . . . . . . . . . . . 156
5.2.2 Research Methods for Electromagnetic Stress . . . . . . . . . . 159
5.3 Stress Field Analysis of the Pulsed Alternators. . . . . . . . . . . . . . . 162
5.3.1 Electromagnetic Stress Analysis . . . . . . . . . . . . . . . . . . . . 162
5.3.2 Mechanical Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . 166
5.4 Study on the Mechanical Characteristics of Pulsed Alternators . . . 175
5.4.1 Status of High-Speed Rotor Dynamics Research . . . . . . . . 175
5.4.2 Critical Speed and Modal Analysis. . . . . . . . . . . . . . . . . . 178
6 Controlling Technology for Pulsed Alternators. . . . . . . . . . . . . . . . . 181
6.1 Overview of Pulsed Alternator’s Measurement and Controlling
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2 Excitation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2.1 High-Voltage Capacitors Provide Excitation Magnetic
Field Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2.2 The Rotor’s Own Movement Provides Excitation
Magnetic Field Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.3 Discharging Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.1 High-Voltage Capacitors Provide Excitation Magnetic
Field Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.2 Self-Excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.4 Energy Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.5 Safety of the Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7 Electromagnetic Weapon Load of Pulsed Power Supply. . . . . . . . . . 209
7.1 Railguns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.1.1 Fundamental Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.1.2 Load Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.1.3 Key Technical Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.2 Coilguns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
x Contents
7.2.1 Basic Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.2.2 Key Technical Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.3 Electrothermal Chemical Guns . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.3.1 How Electrothermal Chemical Guns Work . . . . . . . . . . . . 220
7.3.2 Load Characteristics of Electrothermal Chemical Gun . . . . 221
7.3.3 Prospects for Future Discovery and Key Technologies. . . . 223
7.4 Joint Simulation Model of the Core CPA and Its Load
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8 Pulsed Power Switch Components . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1.1 High Power Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1.2 Application of Pulsed Thyristors in Electromagnetic
Emission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.2 How Pulsed Thyristors Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.2.1 Basic Structures and Working Principles. . . . . . . . . . . . . . 232
8.2.2 The Working Characteristics of the Pulsed Thyristors . . . . 233
8.3 Series Thyristor Assembly Protection. . . . . . . . . . . . . . . . . . . . . . 235
8.3.1 The Basic Principles of Unbalancing Thyristor Series
Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.3.2 Static Voltage Balancing Design. . . . . . . . . . . . . . . . . . . . 237
8.3.3 Dynamic Voltage Balancing Design . . . . . . . . . . . . . . . . . 237
8.4 Effect of Gate Electrode Structure and Triggering Circuit
on Thyristor Turn-On Characteristics. . . . . . . . . . . . . . . . . . . . . . 237
8.4.1 Effect of the Trigger Electrode Shape on the Opening
of the Thyristor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.4.2 Effect of the Trigger Pulse on the Turn-On State
of the Thyristor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.5 Simultaneous Trigger of the Pulsed Thyristor Assembly . . . . . . . . 239
8.5.1 Electromagnetic Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.5.2 Direct-Light Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.5.3 Indirect-Light Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9 Pulsed Alternator Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.1 Introduction to the Pulsed Alternator Drive System . . . . . . . . . . . 243
9.2 Development of High-Speed Motors . . . . . . . . . . . . . . . . . . . . . . 243
9.3 Key Technologies Within High-Speed Permanent Magnet
Synchronous Motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9.3.1 Structural Design and Optimization. . . . . . . . . . . . . . . . . . 247
9.3.2 Rotor Structure and Strength . . . . . . . . . . . . . . . . . . . . . . 250
9.3.3 Loss and Temperature Rise . . . . . . . . . . . . . . . . . . . . . . . 253
Bibliography .. .... .... .... ..... .... .... .... .... .... ..... .... 257