ebook img

Property Testing and Combinatorial Approximation PDF

178 Pages·1978·1.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Property Testing and Combinatorial Approximation

Property Testing and Combinatorial Approximation 8 0 0 2 - 9 0 - 8 0 Arie Matsliah 0 2 - D H P s i s e h T . D . h P - t n e m t r a p e D e c n e i c S r e t u p m o C - n o i n h c e T 8 0 0 2 - 9 0 - 8 0 0 2 - D H P s i s e h T . D . h P - t n e m t r a p e D e c n e i c S r e t u p m o C - n o i n h c e T Property Testing and Combinatorial Approximation 8 0 0 2 - 9 0 - 8 0 Research Thesis 0 2 - D H P s i s e h Submitted in Partial Fulflllment of the Requirements T for the Degree of Doctor of Philosophy . D . h P - t n e m t r a p e D Arie Matsliah e c n e i c S r e t u p m Submitted to the Senate of the o Technion - Israel Institute of Technology C - n o i n h c e T Tamuz 5768 Haifa July 2008 8 0 0 2 - 9 0 - 8 0 0 2 - D H P s i s e h T . D . h P - t n e m t r a p e D e c n e i c S r e t u p m o C - n o i n h c e T The research thesis was done under the supervision of Assoc. Prof. Eldar Fischer in the Department of Computer Science. 8 0 0 2 - 9 0 - 8 0 0 2 - D H P Acknowledgements s i s e h T I am grateful to my supervisor - Eldar Fischer, for guiding me devotedly for the . D last flve years, for his continued encouragement and for many invaluable suggestions h. in this work. I would also like to include my gratitude to Eli Ben-Sasson, especially P for his willingness to teach and assist in any given moment. Furthermore, I am - deeply indebted to my collaborators in this work: Sourav Chakraborty, Prahladh t n Harsha, Oded Lachish, Ilan Newman, Asaf Shapira and Orly Yahalom. e m t r a p e D e c n e i c S r e t u p m o C - n o i n h c e T The generous flnancial help of the Technion is gratefully acknowledged 8 0 0 2 - 9 0 - 8 0 0 2 - D H P s i s e h T . D . h P - t n e m t r a p e D e c n e i c S r e t u p m o C - n o i n h c e T 8 0 0 2 Contents - 9 0 - 8 0 0 2 D- List of Figures v H P Abstract 1 s si 1 General introduction 3 e h 1.1 Combinatorial property testing . . . . . . . . . . . . . . . . . . . . . . . . . 3 T 1.1.1 Property testing in the dense graph (and hypergraph) model . . . . 4 . D 1.1.2 Testing graph properties in other models . . . . . . . . . . . . . . . 5 . h P 1.1.3 Testing massively parameterized properties . . . . . . . . . . . . . . 5 - 1.2 Probabilistically checkable proofs of proximity - PCPPs . . . . . . . . . . . 6 t n e 2 Summary of results 8 m t 2.1 Testing graph isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 r a p 2.2 Approximate hypergraph partitioning and applications . . . . . . . . . . . . 8 e D 2.3 Testing st-connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 e 2.4 Testing orientations for being Eulerian . . . . . . . . . . . . . . . . . . . . . 9 c n 2.5 Length-Soundness tradeofis for 3-query PCPPs . . . . . . . . . . . . . . . . 10 e i c S 3 Global deflnitions and preliminaries 11 r 3.1 General notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 e t u 3.2 Property testers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 p m 3.3 Graphs and graph properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12 o 3.3.1 Distance between graphs and properties . . . . . . . . . . . . . . . . 12 C 3.4 Restriction, variation distance and Yao’s method . . . . . . . . . . . . . . . 13 - n o i n I Dense Graphs and Hypergraphs 14 h c e T 4 Testing graph isomorphism 15 4.1 Background and introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Speciflc deflnitions and preliminaries . . . . . . . . . . . . . . . . . . . . . . 17 i 4.3 One-sided testers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3.1 One-sided testing of two unknown graphs . . . . . . . . . . . . . . . 19 4.3.2 One-sided testing where one of the graphs is known in advance . . . 23 8 4.4 Two-sided testers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 0 0 4.4.1 Two-sided testing where one of the graphs is known in advance . . . 24 2 - 4.4.2 Two-sided testing of two unknown graphs . . . . . . . . . . . . . . . 32 9 4.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 - 8 0 5 Approximate hypergraph partitioning and applications 37 0 2 5.1 Background and introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 38 - D 5.2 Extension of the GGR-algorithm . . . . . . . . . . . . . . . . . . . . . . . . 39 H 5.2.1 The partition property . . . . . . . . . . . . . . . . . . . . . . . . . . 40 P 5.3 Immediate applications of the theorems . . . . . . . . . . . . . . . . . . . . 42 s i s 5.3.1 Estimating the maximum number of satisflable clauses in a k-CNF . 43 e h 5.4 Finding a regular partition of a graph . . . . . . . . . . . . . . . . . . . . . 44 T 5.4.1 Background and statement . . . . . . . . . . . . . . . . . . . . . . . 44 . D 5.4.2 The proof idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 . h P 5.4.3 Proof of Theorem 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 48 - 5.5 Regular partition of a hypergraph. . . . . . . . . . . . . . . . . . . . . . . . 52 t n 5.5.1 Proof for Theorem 5.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 53 e m 5.6 Overview of the proof of Theorems 5.2.1 and 5.2.2 . . . . . . . . . . . . . . 56 t r 5.7 The proof of Theorem 5.2.1 and Theorem 5.2.2 . . . . . . . . . . . . . . . . 57 a p 5.7.1 Proof of Lemma 5.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 60 e D 5.7.2 Algorithm A - proof of Lemma 5.7.4 . . . . . . . . . . . . . . . . 61 1=" e 5.7.3 Some possible ad-hoc optimizations for properties . . . . . . . . . . 67 c n e 5.7.4 The last missing details of the proof . . . . . . . . . . . . . . . . . . 67 i c 5.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 S r e t u II Massively Parameterized Properties 72 p m o 6 Introduction 73 C 6.1 The orientation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 - n 6.2 Speciflc deflnitions and preliminaries . . . . . . . . . . . . . . . . . . . . . . 74 o i 6.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 n h 6.2.2 Orientation distance, properties and testers . . . . . . . . . . . . . . 75 c e T 7 Testing st-connectivity 76 7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.1.1 Connectivity programs and Branching programs . . . . . . . . . . . 78 ii 7.2 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2.1 Proof overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.3 Reducing general graphs to connectivity programs . . . . . . . . . . . . . . 81 8 7.3.1 Reducibility between st-connectivity instances . . . . . . . . . . . . 81 0 0 7.3.2 Reduction to graphs having high-diameter subgraphs . . . . . . . . . 81 2 - 7.3.3 Properties of "-long graphs . . . . . . . . . . . . . . . . . . . . . . . 83 9 7.3.4 Reduction to bounded width graphs . . . . . . . . . . . . . . . . . . 83 0 - 8 7.3.5 Reducing bounded width graphs to st-connectivity programs . . . . 84 0 0 7.4 Reducing st-connectivity programs to branching programs . . . . . . . . . . 84 2 - 7.4.1 Converting clustered branching programs to non-clustered ones . . . 86 D 7.5 Wrapping up { proof of Theorem 7.2.1 . . . . . . . . . . . . . . . . . . . . . 87 H P 7.6 Completing the missing proofs . . . . . . . . . . . . . . . . . . . . . . . . . 88 s 7.6.1 Proof of Lemma 7.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 88 i s e 7.6.2 Proof of Lemma 7.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 90 h T 8 Testing for Eulerian orientations 92 . D 8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 . h P 8.2 Speciflc preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 - 8.3 Lower bounds for bounded-degree graphs . . . . . . . . . . . . . . . . . . . 95 t n 8.3.1 Overview of the proof of Theorem 8.3.1 . . . . . . . . . . . . . . . . 96 e m 8.3.2 Torus { formal deflnition . . . . . . . . . . . . . . . . . . . . . . . . 96 t r 8.3.3 Deflning two auxiliary distributions . . . . . . . . . . . . . . . . . . 97 a p 8.3.4 Deflning the distributions and . . . . . . . . . . . . . . . . . 99 e m m P F D 8.3.5 Bounding the probability of distinguishing between and . . . 102 m m P F e 8.3.6 Proof of Theorem 8.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 104 c n e 8.3.7 Overview of the proof of Theorem 8.3.2 . . . . . . . . . . . . . . . . 104 i c 8.3.8 Proof of Theorem 8.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 105 S r e t u III Probabilistically Checkable Proofs of Proximity 109 p m o 9 Length-Soundness tradeofis for 3-query PCPPs 110 C 9.1 Background and introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 110 - n 9.1.1 Informal description of the results . . . . . . . . . . . . . . . . . . . 111 o i 9.1.2 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 113 n h 9.1.3 Proof techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 c e 9.2 Speciflc deflnitions and statement of the main results . . . . . . . . . . . . . 117 T 9.2.1 Probabilistically checkable proofs of proximity (PCPPs) . . . . . . . 117 9.2.2 Soundness deflciency . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 iii 9.2.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.2.4 Inspective PCPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.3 Long PCPPs with best possible soundness . . . . . . . . . . . . . . . . . . . 123 8 9.3.1 Fourier transform { preliminaries . . . . . . . . . . . . . . . . . . . . 123 0 0 9.3.2 Proof of Theorem 9.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 124 2 - 9.4 Proof of Length-Soundness tradeofi (Theorem 9.2.3) . . . . . . . . . . . . . 127 9 9.4.1 Constraint graphs and the generalized Decomposition Lemma . . . . 127 0 - 8 9.4.2 The uniform (sparse) verifler lemma . . . . . . . . . . . . . . . . . . 130 0 0 9.4.3 Best soundness for inspective veriflers (proof of Theorem 9.2.8) . . . 132 2 - 9.4.4 Proof of Theorem 9.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 134 D 9.4.5 Proof of Lemma 9.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 134 H P 9.5 Proof of Length-Soundness tradeofi for linear veriflers (Theorem 9.2.9) . . . 137 s 9.5.1 Proof of Theorem 9.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . 138 i s e 9.5.2 The Decomposition Lemma . . . . . . . . . . . . . . . . . . . . . . . 140 h T 9.5.3 Proof of Lemma 9.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 141 . D . h IV Bibliography 148 P - t n e m t r a p e D e c n e i c S r e t u p m o C - n o i n h c e T iv

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.