ebook img

Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e PDF

374 Pages·2009·2.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e

Propagation of Sound in Porous Media Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Second Edition Jean F. Allard Universite´ le Mans, France Noureddine Atalla Universite´ de Sherbrooke, Qc, Canada A John Wiley and Sons, Ltd., Publication Thiseditionfirstpublished2009 2009,JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionof thepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendor mentionedinthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationin regardtothesubjectmattercovered.Itissoldontheunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,theservices ofacompetentprofessionalshouldbesought. LibraryofCongressCataloguing-in-PublicationData Allard,J.-F. Propagationofsoundinporousmedia:modellingsoundabsorbingmaterials/JeanF. Allard–2nded./NoureddineAtalla. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-74661-5(cloth) 1. Porousmaterials–Acousticproperties–Mathematicalmodels. 2. Absorptionofsound. 3. Sound–Transmission. I. Atalla,Noureddine. II. Title. TA418.9.P6A42 2009 620.1(cid:1)1694015118–dc22 2009028758 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN: 978-0-470-746615-0 Typesetin10/12ptTimesbyLaserwordsPrivateLimited,Chennai,India. PrintedandboundinSingaporebyMarkonoPrintMediaPte,Ltd. Contents Preface to the second edition xiii 1 Plane waves in isotropic fluids and solids 1 1.1 Introduction 1 1.2 Notation – vector operators 1 1.3 Strain in a deformable medium 2 1.4 Stress in a deformable medium 4 1.5 Stress–strain relations for an isotropic elastic medium 5 1.6 Equations of motion 8 1.7 Wave equation in a fluid 10 1.8 Wave equations in an elastic solid 11 References 13 2 Acoustic impedance at normal incidence of fluids. Substitution of a fluid layer for a porous layer 15 2.1 Introduction 15 2.2 Plane waves in unbounded fluids 15 2.2.1 Travellingwaves 15 2.2.2 Example 16 2.2.3 Attenuation 16 2.2.4 Superpositionoftwowavespropagating inopposite directions 17 2.3 Main properties of impedance at normal incidence 17 2.3.1 Impedancevariationalongadirectionofpropagation 17 2.3.2 Impedanceatnormalincidenceofalayeroffluidbacked byanimperviousrigidwall 18 2.3.3 Impedanceatnormalincidenceofamultilayered fluid 19 vi CONTENTS 2.4 Reflection coefficient and absorption coefficient at normal incidence 19 2.4.1 Reflectioncoefficient 19 2.4.2 Absorptioncoefficient 20 2.5 Fluids equivalent to porous materials: the laws of Delany and Bazley 20 2.5.1 Porosityandflowresistivityinporousmaterials 20 2.5.2 Microscopicandmacroscopicdescriptionofsoundpropagation inporousmedia 22 2.5.3 TheLawsofDelanyandBazleyandflowresistivity 22 2.6 Examples 23 2.7 The complex exponential representation 26 References 26 3 Acoustic impedance at oblique incidence in fluids. Substitution of a fluid layer for a porous layer 29 3.1 Introduction 29 3.2 Inhomogeneous plane waves in isotropic fluids 29 3.3 Reflection and refraction at oblique incidence 31 3.4 Impedance at oblique incidence in isotropic fluids 33 3.4.1 Impedancevariationalong adirectionperpendicular toanimpedanceplane 33 3.4.2 Impedanceatobliqueincidencefora layeroffinite thickness backedbyanimperviousrigidwall 34 3.4.3 Impedanceatobliqueincidencein amultilayeredfluid 35 3.5 Reflection coefficient and absorption coefficient at oblique incidence 36 3.6 Examples 37 3.7 Plane waves in fluids equivalent to transversely isotropic porous media 39 3.8 Impedance at oblique incidence at the surface of a fluid equivalent to an anisotropic porous material 41 3.9 Example 43 References 43 4 Sound propagation in cylindrical tubes and porous materials having cylindrical pores 45 4.1 Introduction 45 4.2 Viscosity effects 45 4.3 Thermal effects 50 4.4 Effective density and bulk modulus for cylindrical tubes having triangular, rectangular and hexagonal cross-sections 54 4.5 High- and low-frequency approximation 55 4.6 Evaluation of the effective density and the bulk modulus of the air in layers of porous materials with identical pores perpendicular to the surface 57 4.6.1 Effectivedensityandbulkmodulusincylindricalpores havinga circularcross-section 57 4.6.2 Effectivedensityandbulkmodulusinslits 59 CONTENTS vii 4.6.3 High-andlow-frequencylimitsoftheeffectivedensityand thebulkmodulusforporesofarbitrarycross-sectionalshape 60 4.7 The Biot model for rigid framed materials 61 4.7.1 SimilaritybetweenG andG 61 c s 4.7.2 Bulk modulusoftheairinslits 62 4.7.3 Effectivedensityandbulkmodulusofairincylindrical poresofarbitrarycross-sectionalshape 64 4.8 Impedance of a layer with identical pores perpendicular to the surface 65 4.8.1 Normalincidence 65 4.8.2 Obliqueincidence–locallyreactingmaterials 67 4.9 Tortuosity and flow resistivity in a simple anisotropic material 67 4.10 Impedance at normal incidence and sound propagation in oblique pores 69 4.10.1 Effectivedensity 69 4.10.2 Impedance 71 Appendix 4.A Important expressions 71 Descriptionon themicroscopicscale 71 Effectivedensityandbulkmodulus 71 References 72 5 Sound propagation in porous materials having a rigid frame 73 5.1 Introduction 73 5.2 Viscous and thermal dynamic and static permeability 74 5.2.1 Definitions 74 5.2.2 Directmeasurementofthestaticpermeabilities 76 5.3 Classical tortuosity, characteristic dimensions, quasi-static tortuosity 78 5.3.1 Classicaltortuosity 78 5.3.2 Viscouscharacteristiclength 79 5.3.3 Thermalcharacteristiclength 80 5.3.4 Characteristiclengthsforfibrousmaterials 80 5.3.5 Directmeasurementofthehigh-frequencyparameters, classicaltortuosityandcharacteristiclengths 81 5.3.6 Static tortuosity 82 5.4 Models for the effective density and the bulk modulus of the saturating fluid 83 5.4.1 Prideetal.modelfortheeffectivedensity 83 5.4.2 SimplifiedLafargemodelforthebulk modulus 83 5.5 Simpler models 84 5.5.1 TheJohnsonetal.model 84 5.5.2 TheChampoux–Allard model 84 5.5.3 TheWilson model 85 5.5.4 PredictionoftheeffectivedensitywiththePrideetal.model andthemodelbyJohnsonetal. 85 5.5.5 PredictionofthebulkmoduluswiththesimplifiedLafarge modelandtheChampoux-Allardmodel 85 viii CONTENTS 5.5.6 Predictionofthesurfaceimpedance 87 5.6 Prediction of the effective density and the bulk modulus of open cell foams and fibrous materials with the different models 88 5.6.1 Comparisonoftheperformanceofdifferentmodels 88 5.6.2 Practicalconsiderations 88 5.7 Fluid layer equivalent to a porous layer 89 5.8 Summary of the semi-phenomenological models 90 5.9 Homogenization 91 5.10 Double porosity media 95 5.10.1 Definitions 95 5.10.2 Ordersofmagnitude forrealisticdoubleporositymedia 96 5.10.3 Asymptoticdevelopmentmethodfordoubleporositymedia 97 5.10.4 Lowpermeabilitycontrast 98 5.10.5 Highpermeabilitycontrast 99 5.10.6 Practicalconsiderations 102 Appendix 5.A: Simplified calculation of the tortuosity for a porous material having pores made up of an alternating sequence of cylinders 103 (cid:1) Appendix 5.B: Calculation of the characteristic length (cid:1) 104 Appendix 5.C: Calculation of the characteristic length (cid:1) for a cylinder perpendicular to the direction of propagation 106 References 107 6 Biot theory of sound propagation in porous materials having an elastic frame 111 6.1 Introduction 111 6.2 Stress and strain in porous materials 111 6.2.1 Stress 111 6.2.2 Stress–strainrelationsintheBiottheory:Thepotential coupling term 112 6.2.3 Asimpleexample 115 6.2.4 DeterminationofP,QandR 116 6.2.5 Comparisonwithpreviousmodelsofsoundpropagation inporoussound-absorbingmaterials 117 6.3 Inertial forces in the Biot theory 117 6.4 Wave equations 119 6.5 The two compressional waves and the shear wave 120 6.5.1 Thetwocompressionalwaves 120 6.5.2 Theshearwave 122 6.5.3 ThethreeBiotwavesin ordinaryair-saturatedporous materials 123 6.5.4 Example 123 6.6 Prediction of surface impedance at normal incidence for a layer of porous material backed by an impervious rigid wall 126 6.6.1 Introduction 126 6.6.2 Predictionofthesurfaceimpedanceatnormalincidence 126 6.6.3 Example:Fibrousmaterial 129

Description:
I just came across a copy from the interlibrary loan, and I decided to purchase this book. I very much would like to order a copy to use in a course I teach at the University of Illinois at Urbana-Champaign. I can not find a phone number to ask for help to order it; therefore, I decided to send this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.