Proof of a conjecture related to divisibility properties of binomial coefficients∗ 4 Quan-Hui Yang† 1 0 2 School of Mathematics and Statistics, n a J Nanjing University of Information Science and Technology, 8 ] T Nanjing 210044, P. R. China N . h t a Abstract m [ Let a,b and n be positive integers with a > b. In this note, we 2 v prove that 8 2bn 2an an 0 (2bn+1)(2bn+3) 3(a−b)(3a−b) . 1 (cid:18)bn(cid:19)(cid:12) (cid:18)an(cid:19)(cid:18)bn(cid:19) 1 (cid:12) (cid:12) . This confirms a recent conjectur(cid:12)e of Amdeberhan and Moll. 1 0 2010 Mathematics Subject Classifications: 11B65, 05A10 4 1 Keywords: binomial coefficients, p-adic order, divisibility proper- : v i ties X r a 1 Introduction Let Z denote the set of all integers. In 2009, Bober [1] determined all cases such that (a n)!···(a n)! 1 k ∈ Z, (b n)!···(b n)! 1 k+1 ∗This work was supported by the National Natural Science Foundation of China, Grant No. 11371195. †Email: [email protected]. 1 where a 6= b for all s,t, a = b and gcd(a ,...,a ,b ,...,b ) = 1. s t s t 1 k 1 k+1 P P Recently, Z.-W. Sun [12, 13] studied divisibility properties of binomial coefficients and obtained some interesting results. For example, 2n 6n 3n 2(2n+1) , (cid:18)n(cid:19)(cid:12)(cid:18)3n(cid:19)(cid:18)n(cid:19) (cid:12) (cid:12) (cid:12) 3n 15n 5n−1 (10n+1) . (cid:18)n(cid:19)(cid:12)(cid:18)5n(cid:19)(cid:18)n−1(cid:19) (cid:12) (cid:12) Later, GuoandKrattenthaler(see[5,(cid:12)7])gotsomesimilardivisibilityresults. For related results, one can refer to [2]-[4] and [8]-[11]. Let 6n 3n 15n 5n−1 S = 3n n and t = 5n n−1 . n 2(2(cid:0)n+(cid:1)(cid:0)1)(cid:1)2n n (1(cid:0)0n(cid:1)+(cid:0)1) 3(cid:1)n n n (cid:0) (cid:1) (cid:0) (cid:1) In [6], Guo proved the following Sun’s conjectures. Theorem A. (See [12, Conjecture 3(i)].) Let n be a positive integer. Then 3S ≡ 0 (mod 2n+3). n Theorem B. (See [13, Conjecture 1.3].) Let n be a positive integer. Then 21t ≡ 0 (mod 10n+3). n Some other results are also proved. T. Amdeberhan and V. H. Moll proposed the following conjecture (See Guo [6, Conjecture 7.1]). Conjecture 1. Let a,b and n be positive integers with a > b. Then 2bn 2an an (2bn+1)(2bn+3) 3(a−b)(3a−b) . (cid:18)bn(cid:19)(cid:12) (cid:18)an(cid:19)(cid:18)bn(cid:19) (cid:12) (cid:12) In this note, we give the proof o(cid:12)f this conjecture. Theorem 1. Conjecture 1 is true. Remark 1. Let a = 3 and b = 1. Then Theorem A follows from Theorem 1 immediately. 2 2 Proofs For an integer n and a prime p, we write pkkn if pk|n and pk+1 ∤ n. We use ν (n) to denote such integer k. It is well known that p ∞ n (1) ν (n!) = , p (cid:22)pi(cid:23) Xi=1 where ⌊x⌋ denotes the greatest integer not exceeding x. Before the proof of Theorem 1, we give the following lemma. Lemma 1. Let x and y be two real numbers. Then ⌊2x⌋ + ⌊y⌋ ≥ ⌊x⌋ + ⌊x−y⌋+⌊2y⌋. Proof. Noting that 2x+y = x+(x−y)+2y, we only need to prove that {2x}+{y} ≤ {x}+{x−y}+{2y}, where {z} denotes the fractional part of z. We can prove it by comparing {x} and {y} with 1/2. We leave the proof to the reader. Proof of Theorem 1. Let 2an an 2bn (2an)!(bn)! T(a,b,n) := = . (cid:18)an(cid:19)(cid:18)bn(cid:19)(cid:30)(cid:18)bn(cid:19) (an)!(an−bn)!(2bn)! By (1), for any prime p, we have ∞ 2an bn an an−bn 2bn ν (T(a,b,n)) = + − − − . p (cid:18)(cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23)(cid:19) Xi=1 By Lemma 1, it follows that each term of ν (T(a,b,n)) is nonnegative. p Hence ν (T(a,b,n)) ≥ 0. Therefore, T(a,b,n) ∈ Z. p Since gcd(2bn+1,2bn+3) = 1, it suffices to prove that 2bn+1|3(a−b)(3a−b)T(a,b,n) and 2bn+3|3(a−b)(3a−b)T(a,b,n). 3 Now we first prove the latter part. Suppose that pαk2bn+3 with α ≥ 1. Then we shall prove (2) pα|3(a−b)(3a−b)T(a,b,n). Let pβka−b and pγk3a−b with β ≥ 0 and γ ≥ 0. Write τ = max{β,γ}. If α ≤ τ, then (2) clearly holds. Now we assume α > τ. Suppose that p ≥ 5. Next we prove 2an bn an an−bn 2bn + − − − = 1 (cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) for i = τ + 1,τ + 2,...,α. Noting that p|2bn + 3 and p ≥ 5, we have gcd(p,n) = 1. Otherwise, we have p|3, a contradiction. By pαk2bn+3, it follows that 2bn ≡ pα−3 (mod pα) and bn ≡ (pα−3)/2 (mod pα). Take an integer i ∈ {τ +1,τ +2,...,α}. Then 2bn ≡ pi −3 (mod pi) and bn ≡ (pi −3)/2 (mod pi). Now we divide into several cases according to the value of an (mod pi). Case 1. an ≡ t (mod pi) with 0 ≤ t < (pi − 3)/2. It follows that 2an ≡ 2t (mod pi) and 0 ≤ 2t < pi −3. We also have an−bn ≡ t−(pi −3)/2+pi (mod pi), where 0 ≤ t−(pi −3)/2+pi < pi. Hence 2an bn an an−bn 2bn + − − − (cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) 2an−2t bn−(pi −3)/2 an−t = + − pi pi pi an−bn−(t−(pi −3)/2+pi) 2bn−(pi −3) − − (cid:18) pi (cid:19) pi = 1. Case 2. an ≡ (pi − 3)/2 (mod pi). Clearly, an − bn ≡ 0 (mod pi). Since gcd(p,n) = 1, we have pi|a−b. However, pβka−b and β ≤ τ < i, a contradiction. 4 Case 3. an ≡ (pi −1)/2 (mod pi). It follows that 3(pi −1) (pi −3) 3an−bn ≡ − ≡ 0 (mod pi). 2 2 By gcd(p,n) = 1, we have pi|3a−b. This contradicts pγk3a−b and γ < i. Case 4. an ≡ t (mod pi) with (pi +1)/2 ≤ t < pi. It follows that 2an ≡ 2t−pi (mod pi), 0 ≤ 2t−pi < pi. We also have an−bn ≡ t−(pi −3)/2 (mod pi), 0 ≤ t−(pi −3)/2 < pi. Hence 2an bn an an−bn 2bn + − − − (cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) 2an−(2t−pi) bn−(pi −3)/2 an−t = + − pi pi pi an−bn−(t−(pi −3)/2) 2bn−(pi −3) − − (cid:18) pi (cid:19) pi = 1. Therefore, ν (T(a,b,n)) ≥ α−τ, and then p ν (3(a−b)(3a−b)T(a,b,n)) ≥ α. p That is, (2) holds. Now we deal with the case p = 3. If 9|n, then 3|2bn+3 and 9 ∤ 2bn+3. It follows that α = 1, and then (2) clearly holds. If 9 ∤ n, then we can follow the proof of the case p ≥ 5 above. In Case 2, by an − bn ≡ 0 (mod 3i), we have 3i−1|a−b. In Case 3, we have 3i−1|3a−b. So, if i ≥ τ + 2, then i−1 ≥ τ +1. It is a contradiction in both cases. Hence 2an bn an an−bn 2bn + − − − = 1 (cid:22) 3i (cid:23) (cid:22)3i (cid:23) 3i (cid:22) 3i (cid:23) (cid:22) 3i (cid:23) j k for i = τ + 2,τ + 3,...,α. It follows that ν (T(a,b,n)) ≥ α − τ − 1, and 3 then ν (3(a−b)(3a−b)T(a,b,n)) ≥ α. 3 5 That is, (2) also holds. Hence, 2bn+3|3(a−b)(3a−b)T(a,b,n). The proof of 2bn+1|3(a−b)(3a−b)T(a,b,n) is very similar. We omit it here. This completes the proof of Theorem 1. References [1] J.W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc. 79 (2009), 422-444. [2] N.J. Calkin, Factors of sums of powers of binomial coefficients, Acta Arith. 86 (1998), 17-26. [3] H.Q. Cao and H. Pan, Factors of alternating binomial sums, Adv. in Appl. Math. 45 (2010), 96-107. [4] N. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592. [5] V.J.W. Guo, Proof of Suns conjecture on the divisibility of certain bi- nomial sums, Electron. J. Combin. 20(4) (2013), #P20. [6] V.J.W. Guo, Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun, available at http://arxiv.org/abs/1312.7548, 2013. [7] V.J.W. Guo and C. Krattenthaler, Some divisibility properties of bino- mial and q-binomial coefficients, J. Number Theory 135 (2014), 167- 184. [8] V.J.W. Guo, F. Jouhet and J. Zeng, Factors of alternating sums of products of binomial and q-binomial coefficients, Acta Arith. 127 (2007), 17-31. 6 [9] V.J.W. Guo and J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number Theory 130 (2010), 172-186. [10] V.J.W. Guo and J. Zeng, Factors of sums and alternating sums involv- ing binomial coefficients and powers of integers, Int. Number Theory 7 (2011), 1959-1976. [11] M. Razpet, On divisibility of binomial coefficients, Discrete Math. 135 (1994), 377-379. [12] Z.-W. Sun, On divisibility of binomial coefficients, J. Austral. Math. Soc. 93 (2012), 189-201. [13] Z.-W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Combin. 20(1) (2013), #P9. 7