ebook img

Proof of a conjecture related to divisibility properties of binomial coefficients PDF

0.08 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proof of a conjecture related to divisibility properties of binomial coefficients

Proof of a conjecture related to divisibility properties of binomial coefficients∗ 4 Quan-Hui Yang† 1 0 2 School of Mathematics and Statistics, n a J Nanjing University of Information Science and Technology, 8 ] T Nanjing 210044, P. R. China N . h t a Abstract m [ Let a,b and n be positive integers with a > b. In this note, we 2 v prove that 8 2bn 2an an 0 (2bn+1)(2bn+3) 3(a−b)(3a−b) . 1 (cid:18)bn(cid:19)(cid:12) (cid:18)an(cid:19)(cid:18)bn(cid:19) 1 (cid:12) (cid:12) . This confirms a recent conjectur(cid:12)e of Amdeberhan and Moll. 1 0 2010 Mathematics Subject Classifications: 11B65, 05A10 4 1 Keywords: binomial coefficients, p-adic order, divisibility proper- : v i ties X r a 1 Introduction Let Z denote the set of all integers. In 2009, Bober [1] determined all cases such that (a n)!···(a n)! 1 k ∈ Z, (b n)!···(b n)! 1 k+1 ∗This work was supported by the National Natural Science Foundation of China, Grant No. 11371195. †Email: [email protected]. 1 where a 6= b for all s,t, a = b and gcd(a ,...,a ,b ,...,b ) = 1. s t s t 1 k 1 k+1 P P Recently, Z.-W. Sun [12, 13] studied divisibility properties of binomial coefficients and obtained some interesting results. For example, 2n 6n 3n 2(2n+1) , (cid:18)n(cid:19)(cid:12)(cid:18)3n(cid:19)(cid:18)n(cid:19) (cid:12) (cid:12) (cid:12) 3n 15n 5n−1 (10n+1) . (cid:18)n(cid:19)(cid:12)(cid:18)5n(cid:19)(cid:18)n−1(cid:19) (cid:12) (cid:12) Later, GuoandKrattenthaler(see[5,(cid:12)7])gotsomesimilardivisibilityresults. For related results, one can refer to [2]-[4] and [8]-[11]. Let 6n 3n 15n 5n−1 S = 3n n and t = 5n n−1 . n 2(2(cid:0)n+(cid:1)(cid:0)1)(cid:1)2n n (1(cid:0)0n(cid:1)+(cid:0)1) 3(cid:1)n n n (cid:0) (cid:1) (cid:0) (cid:1) In [6], Guo proved the following Sun’s conjectures. Theorem A. (See [12, Conjecture 3(i)].) Let n be a positive integer. Then 3S ≡ 0 (mod 2n+3). n Theorem B. (See [13, Conjecture 1.3].) Let n be a positive integer. Then 21t ≡ 0 (mod 10n+3). n Some other results are also proved. T. Amdeberhan and V. H. Moll proposed the following conjecture (See Guo [6, Conjecture 7.1]). Conjecture 1. Let a,b and n be positive integers with a > b. Then 2bn 2an an (2bn+1)(2bn+3) 3(a−b)(3a−b) . (cid:18)bn(cid:19)(cid:12) (cid:18)an(cid:19)(cid:18)bn(cid:19) (cid:12) (cid:12) In this note, we give the proof o(cid:12)f this conjecture. Theorem 1. Conjecture 1 is true. Remark 1. Let a = 3 and b = 1. Then Theorem A follows from Theorem 1 immediately. 2 2 Proofs For an integer n and a prime p, we write pkkn if pk|n and pk+1 ∤ n. We use ν (n) to denote such integer k. It is well known that p ∞ n (1) ν (n!) = , p (cid:22)pi(cid:23) Xi=1 where ⌊x⌋ denotes the greatest integer not exceeding x. Before the proof of Theorem 1, we give the following lemma. Lemma 1. Let x and y be two real numbers. Then ⌊2x⌋ + ⌊y⌋ ≥ ⌊x⌋ + ⌊x−y⌋+⌊2y⌋. Proof. Noting that 2x+y = x+(x−y)+2y, we only need to prove that {2x}+{y} ≤ {x}+{x−y}+{2y}, where {z} denotes the fractional part of z. We can prove it by comparing {x} and {y} with 1/2. We leave the proof to the reader. Proof of Theorem 1. Let 2an an 2bn (2an)!(bn)! T(a,b,n) := = . (cid:18)an(cid:19)(cid:18)bn(cid:19)(cid:30)(cid:18)bn(cid:19) (an)!(an−bn)!(2bn)! By (1), for any prime p, we have ∞ 2an bn an an−bn 2bn ν (T(a,b,n)) = + − − − . p (cid:18)(cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23)(cid:19) Xi=1 By Lemma 1, it follows that each term of ν (T(a,b,n)) is nonnegative. p Hence ν (T(a,b,n)) ≥ 0. Therefore, T(a,b,n) ∈ Z. p Since gcd(2bn+1,2bn+3) = 1, it suffices to prove that 2bn+1|3(a−b)(3a−b)T(a,b,n) and 2bn+3|3(a−b)(3a−b)T(a,b,n). 3 Now we first prove the latter part. Suppose that pαk2bn+3 with α ≥ 1. Then we shall prove (2) pα|3(a−b)(3a−b)T(a,b,n). Let pβka−b and pγk3a−b with β ≥ 0 and γ ≥ 0. Write τ = max{β,γ}. If α ≤ τ, then (2) clearly holds. Now we assume α > τ. Suppose that p ≥ 5. Next we prove 2an bn an an−bn 2bn + − − − = 1 (cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) for i = τ + 1,τ + 2,...,α. Noting that p|2bn + 3 and p ≥ 5, we have gcd(p,n) = 1. Otherwise, we have p|3, a contradiction. By pαk2bn+3, it follows that 2bn ≡ pα−3 (mod pα) and bn ≡ (pα−3)/2 (mod pα). Take an integer i ∈ {τ +1,τ +2,...,α}. Then 2bn ≡ pi −3 (mod pi) and bn ≡ (pi −3)/2 (mod pi). Now we divide into several cases according to the value of an (mod pi). Case 1. an ≡ t (mod pi) with 0 ≤ t < (pi − 3)/2. It follows that 2an ≡ 2t (mod pi) and 0 ≤ 2t < pi −3. We also have an−bn ≡ t−(pi −3)/2+pi (mod pi), where 0 ≤ t−(pi −3)/2+pi < pi. Hence 2an bn an an−bn 2bn + − − − (cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) 2an−2t bn−(pi −3)/2 an−t = + − pi pi pi an−bn−(t−(pi −3)/2+pi) 2bn−(pi −3) − − (cid:18) pi (cid:19) pi = 1. Case 2. an ≡ (pi − 3)/2 (mod pi). Clearly, an − bn ≡ 0 (mod pi). Since gcd(p,n) = 1, we have pi|a−b. However, pβka−b and β ≤ τ < i, a contradiction. 4 Case 3. an ≡ (pi −1)/2 (mod pi). It follows that 3(pi −1) (pi −3) 3an−bn ≡ − ≡ 0 (mod pi). 2 2 By gcd(p,n) = 1, we have pi|3a−b. This contradicts pγk3a−b and γ < i. Case 4. an ≡ t (mod pi) with (pi +1)/2 ≤ t < pi. It follows that 2an ≡ 2t−pi (mod pi), 0 ≤ 2t−pi < pi. We also have an−bn ≡ t−(pi −3)/2 (mod pi), 0 ≤ t−(pi −3)/2 < pi. Hence 2an bn an an−bn 2bn + − − − (cid:22) pi (cid:23) (cid:22)pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) (cid:22) pi (cid:23) 2an−(2t−pi) bn−(pi −3)/2 an−t = + − pi pi pi an−bn−(t−(pi −3)/2) 2bn−(pi −3) − − (cid:18) pi (cid:19) pi = 1. Therefore, ν (T(a,b,n)) ≥ α−τ, and then p ν (3(a−b)(3a−b)T(a,b,n)) ≥ α. p That is, (2) holds. Now we deal with the case p = 3. If 9|n, then 3|2bn+3 and 9 ∤ 2bn+3. It follows that α = 1, and then (2) clearly holds. If 9 ∤ n, then we can follow the proof of the case p ≥ 5 above. In Case 2, by an − bn ≡ 0 (mod 3i), we have 3i−1|a−b. In Case 3, we have 3i−1|3a−b. So, if i ≥ τ + 2, then i−1 ≥ τ +1. It is a contradiction in both cases. Hence 2an bn an an−bn 2bn + − − − = 1 (cid:22) 3i (cid:23) (cid:22)3i (cid:23) 3i (cid:22) 3i (cid:23) (cid:22) 3i (cid:23) j k for i = τ + 2,τ + 3,...,α. It follows that ν (T(a,b,n)) ≥ α − τ − 1, and 3 then ν (3(a−b)(3a−b)T(a,b,n)) ≥ α. 3 5 That is, (2) also holds. Hence, 2bn+3|3(a−b)(3a−b)T(a,b,n). The proof of 2bn+1|3(a−b)(3a−b)T(a,b,n) is very similar. We omit it here. This completes the proof of Theorem 1. References [1] J.W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc. 79 (2009), 422-444. [2] N.J. Calkin, Factors of sums of powers of binomial coefficients, Acta Arith. 86 (1998), 17-26. [3] H.Q. Cao and H. Pan, Factors of alternating binomial sums, Adv. in Appl. Math. 45 (2010), 96-107. [4] N. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592. [5] V.J.W. Guo, Proof of Suns conjecture on the divisibility of certain bi- nomial sums, Electron. J. Combin. 20(4) (2013), #P20. [6] V.J.W. Guo, Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun, available at http://arxiv.org/abs/1312.7548, 2013. [7] V.J.W. Guo and C. Krattenthaler, Some divisibility properties of bino- mial and q-binomial coefficients, J. Number Theory 135 (2014), 167- 184. [8] V.J.W. Guo, F. Jouhet and J. Zeng, Factors of alternating sums of products of binomial and q-binomial coefficients, Acta Arith. 127 (2007), 17-31. 6 [9] V.J.W. Guo and J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number Theory 130 (2010), 172-186. [10] V.J.W. Guo and J. Zeng, Factors of sums and alternating sums involv- ing binomial coefficients and powers of integers, Int. Number Theory 7 (2011), 1959-1976. [11] M. Razpet, On divisibility of binomial coefficients, Discrete Math. 135 (1994), 377-379. [12] Z.-W. Sun, On divisibility of binomial coefficients, J. Austral. Math. Soc. 93 (2012), 189-201. [13] Z.-W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Combin. 20(1) (2013), #P9. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.