ebook img

Proof Analysis: A Contribution to Hilbert’s Last Problem PDF

280 Pages·2011·1.66 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proof Analysis: A Contribution to Hilbert’s Last Problem

This page intentionally left blank ProofAnalysis This book continues from where the authors’ previous book, StructuralProofTheory,ended.Itpresentsanextensionofthemethods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic that serves both the mathematicallyandphilosophicallyorientedreaderisincluded.The methodisbuiltupgradually,withexamplesdrawnfromtheoriesof order,latticetheoryandelementarygeometry.Theaimis,ineachof the examples, to help the reader grasp the combinatorial behaviour ofanaxiomsystem,whichtypicallyleadstodecidabilityresults.The lastpartpresents,asanapplicationandextensionofallthatprecedes it,aproof-theoreticalapproachtotheKripkesemanticsofmodaland relatedlogics,withagreatnumberofnewresults,providingessential readingformathematicalandphilosophicallogicians. sara negri isDocentofLogicattheUniversityofHelsinki.Sheis theco-authorofStructuralProofTheory (Cambridge,2001,withJan vonPlato)andshehaspublishedanumberofpapersonmathematical andphilosophicallogic. jan von plato is Professor of Philosophy at the Univer- sity of Helsinki. He is the author of Creating Modern Probability (Cambridge,1994)andtheco-author(withSaraNegri)ofStructural ProofTheory (Cambridge,2001),andhehaspublishedanumberof papersonlogicandepistemology. Proof Analysis A Contribution to Hilbert’s Last Problem sara negri jan von plato UniversityofHelsinki cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107008953 (cid:1)C CambridgeUniversityPress2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Negri,Sara,1967– Proofanalysis:acontributiontoHilbert’slastproblem/SaraNegri,JanvonPlato. p. cm. Includesbibliographicalreferencesandindex. ISBN978-1-107-00895-3(hardback) 1.Prooftheory. I.VonPlato,Jan. II.Title. QA9.54.N438 2011 511.3(cid:2)6–dc23 2011023026 ISBN978-1-107-00895-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate. Contents Preface [pageix] Prologue:Hilbert’slastproblem [1] 1 Introduction [3] 1.1 Theideaofaproof [3] 1.2 Proofanalysis:anintroductoryexample [4] 1.3 Outline [9] part i proof systems based on natural deduction 2 Rulesofproof:naturaldeduction [17] 2.1 Naturaldeductionwithgeneraleliminationrules [17] 2.2 Normalizationofderivations [23] 2.3 Fromaxiomstorulesofproof [29] 2.4 Thetheoryofequality [32] 2.5 Predicatelogicwithequalityanditswordproblem [35] NotestoChapter2 [37] 3 Axiomaticsystems [39] 3.1 Organizationofanaxiomatization [39] 3.2 Relationaltheoriesandexistentialaxioms [46] NotestoChapter3 [49] 4 Orderandlatticetheory [50] 4.1 Orderrelations [50] 4.2 Latticetheory [52] 4.3 Thewordproblemforgroupoids [57] 4.4 Rulesystemswitheigenvariables [62] NotestoChapter4 [67] 5 Theorieswithexistenceaxioms [68] 5.1 Existenceinnaturaldeduction [68] 5.2 Theoriesofequalityandorderagain [71] 5.3 Relationallatticetheory [73] NotestoChapter5 [82] v vi Contents part ii proof systems based on sequent calculus 6 Rulesofproof:sequentcalculus [85] 6.1 Fromnaturaldeductiontosequentcalculus [85] 6.2 Extensionsofsequentcalculus [97] 6.3 Predicatelogicwithequality [106] 6.4 Herbrand’stheoremforuniversaltheories [110] NotestoChapter6 [111] 7 Linearorder [113] 7.1 PartialorderandSzpilrajn’stheorem [113] 7.2 Thewordproblemforlinearorder [119] 7.3 Linearlattices [123] NotestoChapter7 [128] part iii proof systems for geometric theories 8 Geometrictheories [133] 8.1 Systemsofgeometricrules [133] 8.2 Prooftheoryofgeometrictheories [138] 8.3 Barr’stheorem [144] NotestoChapter8 [145] 9 Classicalandintuitionisticaxiomatics [147] 9.1 Thedualityofclassicalandconstructivenotionsandproofs [147] 9.2 Fromgeometrictoco-geometricaxiomsandrules [150] 9.3 Dualityofdependenttypesanddegeneratecases [155] NotestoChapter9 [156] 10 Proofanalysisinelementarygeometry [157] 10.1 Projectivegeometry [157] 10.2 Affinegeometry [173] 10.3 Examplesofproofanalysisingeometry [180] NotestoChapter10 [181] part iv proof systems for non-classical logics 11 Modallogic [185] 11.1 Thelanguageandaxiomsofmodallogic [185] 11.2 Kripkesemantics [187] 11.3 FormalKripkesemantics [189] 11.4 Structuralpropertiesofmodalcalculi [193] 11.5 Decidability [201] Contents vii 11.6 Modalcalculiwithequality,undefinabilityresults [210] 11.7 Completeness [213] NotestoChapter11 [219] 12 Quantifiedmodallogic,provabilitylogic,&other non-classicallogics [222] 12.1 Addingthequantifiers [222] 12.2 Provabilitylogic [234] 12.3 Intermediatelogics [239] 12.4 Substructurallogics [249] NotestoChapter12 [251] Bibliography [254] Indexofnames [262] Indexofsubjects [264]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.