ebook img

Progress on nuclear modifications of structure functions PDF

0.48 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress on nuclear modifications of structure functions

TheJournal’snamewillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2016 6 1 0 2 n Progress on nuclear modifications of structure functions a J 5 S.Kumano1,2 2 1KEKTheoryCenter,InstituteofParticleandNuclearStudies,KEK, ] 1-1,Ooho,Tsukuba,Ibaraki,305-0801,Japan h 2J-PARCBranch,KEKTheoryCenter,InstituteofParticleandNuclearStudies,KEK, p andTheoryGroup,ParticleandNuclearPhysicsDivision,J-PARCCenter, - p 203-1,Shirakata,Tokai,Ibaraki,319-1106,Japan e h [ Abstract. Wereportprogressonnuclearstructurefunctions,especiallyontheirnuclear modifications and anew tensor structurefunction for thedeuteron. Tounderstand nu- 1 clearstructurefunctionsisanimportantsteptowarddescribingnucleiandQCDmatters v fromlowtohighdensitiesandfromlowtohighenergiesintermsoffundamentalquark 9 and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is 9 also practicallyimportant for understanding new phenomena in high-energy heavy-ion 4 6 collisionsatRHICandLHC.Furthermore, sincesystematicerrorsofcurrent neutrino- 0 oscillationexperimentsaredominatedbyuncertaintiesofneutrino-nucleusinteractions, . suchstudiesarevaluableforfindingnewphysicsbeyondcurrentframework.Next,anew 1 tensor-polarizedstructurefunctionb isdiscussedforthedeuteron.Therewasameasure- 0 1 mentbyHERMES;however,itsdataareinconsistentwiththeconventionalconvolution 6 1 estimatebased on thestandard deuteron model withD-stateadmixture. Thisfact sug- : geststhatanew hadronic phenomenon should existinthetensor-polarized deuteron at v highenergies,anditwillbeexperimentallyinvestigatedatJLabfromtheendof2010’s. i X r a 1 Introduction Nuclearstructurefunctionsaredifferentfromcorrespondingonesofthenucleon. Suchnuclearmod- ificationshavebeenmeasuredfromrelativelysmallx(∼0.005)tolargex(∼0.7)mainlyincharged- leptondeepinelasticscattering(DIS).Physicsmechanismsforthenucleareffectsaredifferentineach xregion[1]. Atsmall x,avirtualphotonbecomesqq¯ (orvectormesons),whichinteractswithanu- cleusbystronginteractions. Itleadstonuclearshadowingphenomenaduetomultipleinteractionsin anucleus. Atmedium x,therearenegativecontributionsfromnuclearbindingandpossibleinternal nucleonmodifications. Themodificationsarepositiveatlarge x duetonucleon’sFermimotionina nucleus. Althoughthe major nuclear-modificationmechanismsare known, we cannotcalculate the structurefunctionsprecisely,typicallylessthan10%accuracy,bythetheoreticalmodels. Foractual applicationto heavy-ionphysicsand neutrinoreactions, it is practically not appropriateto reply on suchmodels. Forexample,neutrino-nucleuscrosssectionsneedtobecalculatedwithin5%accuracy in future leptonic CP violation measurements [2]. Therefore, it is desirable to use global analysis results as a modelfor the nuclear parton distribution functions(NPDFs) [3, 4], in the same way as the globalanalysis PDFs are used for calculating cross sections at LHC to find physics beyondthe standardmodel. TheJournal’sname TheNPDFsaredeterminedbyanalyzingworlddataonhigh-energynuclearreactions,including charged-leptonDIS,neutrinoDIS,Drell-Yan,andhadronproductions.Currently,therearetwomajor issuesintheNPDFstudies. Oneisthatgluonshadowingisnotdeterminedfromthecurrentmeasure- ments[3,4],andtheotheristhatmodificationssuggestedbytheneutrinoDISdatacouldbedifferent from the ones which are inferred from the charged-leptonDIS [5]. On the first point, the issue is duepartlyto the fact thata lepton-nucleuscollider similar to HERA doesnotexistto observescal- ingviolationatsmall x. However,thesituationcouldimprovebecauseLHCstartedproducingdata, whicharesensitivetosmall-xphysics.Onthesecondpoint,somewhatconflictingresultsareobtained amongdifferentanalysisgroups. Itisdesirabletoclarifythesituationbyanotherseriousanalysisto discussthedetailsofanalysisconditionsanddatahandling.Inthisreport,wediscussthesituationof thesestudiesinSec.2. Asthesecondtopic,weexplaintensorstructurefunctionsofthedeuteronincharged-leptonDIS withapolarizeddeuteron[6]. Thedeuteronstructureiswellknownatlowenergiesanditisdescribed byaproton-neutronS-waveboundstatewithsmallD-waveadmixture.Sincethedeuteronisaspin-1 hadron, it has new polarized structure functions, b , b , b , and b in addition to the four structure 1 2 3 4 functions, F , F , g , and g , which exist for the spin-1/2 nucleon in the charged-leptonDIS. The 1 2 1 2 structurefunctionsb andb areleading-twistones,whicharerelatedbytheCallan-Grosslikerelation 1 2 2xb =b inthescalinglimit. Theb andb arehigher-twistones. 1 2 3 4 Thereareonlyafewb datameasuredbytheHERMEScollaboration[7].Althoughmuchaccurate 1 measurements are needed, there is already an interesting hint in the data toward a new discovery. The most conventionalway to estimate b theoretically is to use a convolution model, where b is 1 1 calculatedbyanunpolarizedstructurefunctionofthenucleonwithnucleon-momentumdistributions includingtheDwave. TheHERMESdataareanorder-of-magnitudelargerthanthisstandardmodel predication.Itindicatesthatb cannotbeunderstoodbytheconventionalmodel,andanewhadronic 1 physicsshouldbe introducedfor interpretationof the HERMES data. Fortunately,an experimental proposaltoJLabwasapprovedforb ,anditsmeasurementwillstartaroundtheyearof2019[8]. Itis 1 agoodopportunitytofindanewexotichadronicphenomenoninthesimplestnucleus,deuteron.The deuterontensorstructureusedtoplayanimportantroleinlow-energynuclearphysics.Itisnowtime tounderstandthetensorstructurein termsof quarkandgluondegreesof freedomwith newhadron physics.WeexplainthiscurrentsituationasthesecondtopicinSec.3. 2 Nuclear partondistribution functions Nuclearpartondistributionsaremodifiedfromtheonesforthenucleon. Thespaceislimitedforthis article, so that we do not addressourselvesto physicsmechanisms. An interested reader may read summary articles in Ref.[1]. We focus our discussions on the status of NPDFs and an application to neutrinophysics. The NPDFs are determined by a globalanalysis of world data on high-energy lepton-nucleus, proton-nucleus, and nucleus-nucleus reactions. The distributions are parametrized, andoptimumparametersaredeterminedbyaχ2 analysis. Thereareafewgroupswhichinvestigate theNPDFs. Therearetwotypesfortheparametrization. Oneistoobtainmodificationsfromtypical nucleonic PDFs, and the other is to obtain the NPDFs directly. The latter one is a general way of analysisonthesamefootingwiththenucleonicPDFanalysis,whereasitiseasiertoimposephysical constrainsin the formerone becausethe determinedNPDFs could becomeunphysicaldistributions due to the lack of data especially at extreme kinematical conditions. If we were to have sufficient experimentaldata,bothresultsshouldagreewitheachother. There are two major issues in the determination of NPDFs. First, nuclear modifications of the gluondistributioncannotbefixedduetothelackofdatawhicharesensitivetothem. Second,some 6thInternationalConferenceonPhysicsOpportunitiesatanElecTron-IonCollider inconsistencieswerepointedoutforthemodificationsbetweencharged-leptonandneutrinoscattering processes[5],althoughsomeotheranalysisdonotshowsuchinconsistencyclearly.Inthefollowing, wefirstexplainaconnectiontoneutrinophysicsanditispartiallyrelatedtothesecondissue. PreciseNPDFsareneededforfindinganynewphysics in high-energy nuclear reactions such as properties of Q2 (GeV2) W2=4 GeV2 quark-gluonmattersin heavy-ioncollisionsatRHICand LHC. There is another important application to neutrino QE physics.Thestatisticalerrorsinneutrino-oscillationmea- surementsbecomesmaller andsmaller, buttheir system- RES DIS atic errors are still dominated by neutrino-nucleusinter- actions, which is an obstacle fora new discovery. There 1 are three major kinematical regions as shown in Fig. 1: quasi-elastic (QE), resonance (RES), and deep inelastic 0 2 ν (GeV) scattering(DIS).Thereare notdefiniteboundariesin the Figure 1. Kinematical regions of sense that W2 and Q2 cut values depend on researchers. neutrino-nucleus scattering. Here, QE, However,a usualchoiceis the cutW2 ≥ 4 GeV2 for the RES, and DIS indicate quasi-elastic, res- DIS, and Q2 should be large enough, typically Q2 ≥ 1 onance,anddeepinelasticscattering. GeV2. Thesethreeregionshavebeeninvestigatedbydif- ferenttypesofphysicists. Inthecurrentneutrinoexperiments,exceptforthe ultra-highenergyIce- Cube experiment, typical energies are from several hundred MeV to a few dozen GeV. Therefore, all of these kinematicalcross sections should be precisely known for reducingthe systematical un- certaintiesinneutrinooscillationmeasurements. ForfutureleptonicCPviolationmeasurements,the crosssectionsneedtobeunderstoodwithinthe5%level.Aprojectisinprogresstoprovideacodeto calculatethecrosssectioninanykinematicalrangebycombiningtheoriesofdifferentregionsatthe J-PARCbranchoftheKEKtheorycenter[2]. Inthefollowing,wediscussonlytheDISstudiesand suchaunificationeffortwillbeexplainedelsewhere. Iftherewerenonuclearmodification,theNPDFsaresimpleadditionofprotonandneutroncon- tributions. However,fromexperimentalmeasurements,nuclearmediumeffectsaretypically10-20% dependingonanuclearsize. Suchmediumeffectsareparametrizedbythefunctionw inRef.[3]as i 1 fA(x,Q2)=w(x,A,Z) Z fp(x,Q2)+Nfn(x,Q2) , (1) i 0 i A i 0 i 0 h i where p and n indicate the protonand neutron, A, Z, and N are mass number, atomic number, and neutronnumber, i indicates a type of distribution (i = u , d , q¯, g), and Q2 is the initial Q2 scale. v v 0 The functions w are expressed by a number of parameters, which are then determined by a global i analysis. The kinematicalrangeof x is0 < x < A fora nucleus. Therefore,thefunctionalformof Eq.(1)cannotdescribetheregionx>1. However,thereisnoDISdatainsuchalarge-xregion,soit isnotaseriousproblematthisstage. IntheHKNanalysis[3],thenuclearmodificationfunctionsare expressedintermsoftheparameters,α,β,a,b,c,andd as i i i i 1 a +bx+c x2+dx3 w(x,A,Z)=1+ 1− i i i i , (2) i Aα! (1−x)β at Q2 = 1 GeV2. Theparametersaredeterminedbyaglobalχ2 analysiswiththestandardDGLAP 0 evolutionequationincomparisonwiththeworlddata. TheJournal’sname Asanexample,nuclearmodificationsof40CaPDFs 1.2 andtheiruncertaintiesareshownforthenext-to-leading Q2=1 GeV2 (NLO) order HKN parametrization [3] in Fig. 2 at 1.1 40Ca Q2 =1GeV2. TherearesomedifferencesintheNPDFs wi(x) 1 fromothergroups[4]atlarge xespeciallyfortheanti- 0.9 quarkandgluondistributionsbecausetherearefewdata q 0.8 g uv whichconstrainthem. Inaddition,largedifferencesex- ist in the gluondistributionsat small x. The nucleonic 0.7 HKN-NLO gluondistributionisconstrainedbythescalingviolation 0.6 0.001 0.01 x 0.1 1 ofF fromtheHERAep-colliderexperiments,whereas 2 there is no such a measurement for nuclei at small x. Figure 2. HKN nuclear modifications for 40CaatQ2=1GeV2. However, the situation may improvein the near future duetoLHCmeasurementswithheavyions. UsingtheobtainedNPDFstogetherwithDGLAPevo- lutionequations,onecancalculatenuclearmodificationsofstructurefunctionsinneutrinoscattering. Someinconsistencieswerereportedbetweenthecharged-leptonDISandneutrinoDISstructurefunc- tions in Ref.[5]; however, the differencesare not clear in other groups [4]. Our analysis is now in progressbyincludingneutrinodataforclarifyingthisissueasanindependenttrial. 3 New spin structurefunction b for deuteron 1 Therearefournewstructurefunctions,b ,b ,b ,andb ,forthespin-1hadronincharged-leptondeep 1 2 3 4 inelasticscattering.Theyaredefinedinthehadrontensoras[6]: F ig ig Wλfλi =−F gˆ + 2 pˆ pˆ + 1ǫ qλsσ+ 2 ǫ qλ(p·qsσ−s·qpσ) µν 1 µν Mν µ ν ν µνλσ Mν2 µνλσ 1 1 1 −b r + b (s +t +u )+ b (s −u )+ b (s −t ), (3) 1 µν 2 µν µν µν 3 µν µν 4 µν µν 6 2 2 wherepandqarespin-1hadronandvirtual-photonmomenta,νistheenergytransfer,andr ,s ,t , µν µν µν andu aredefinedbythepolarizationvectorofthespin-onehadronEµ inRef.[6]. Thespinvector µν sisexpressedbythepolarizationvectoras(s )µ =−iǫµναβE∗(λ )E (λ)p /Mwheretheinitialand λfλi ν f α i β finalpolarizationvectorsaredenotedasEµ(λ)andEµ(λ )withthespinstatesλ andλ ,andMisthe i f i f massofthespin-1hadron.Thecoefficientsofb ,b ,b andb aredefinedassymmetricunderµ↔ν 1 2 3 4 inEq.(3),andtheyvanishunderthespinaverage. Theyarealsodefinedsothatb andb aretwist- 1 2 two functions to satisfy the Callan-Gross type relation, 2xb = b . The b and b are higher-twist 1 2 3 4 structurefunctions. Thetwist-twostructurefunctionb isexpressedintermsofthetensor-polarized 1 partondistributionsδ qandδ q¯ as T T 1 q+1+q−1 b (x,Q2)= e2 δ q(x,Q2)+δ q¯ (x,Q2) , δ q ≡q0− i i . (4) 1 2 i T i T i T i i 2 Xi h i Here, i indicates the flavor of a quark, e is a quark charge, and qλ indicates an unpolarized-quark i i distribution in the hadronspin state λ. The tensor-polarizeddistribution is much differentfrom the longitudinally-polarizedone∆q = q −q , where↑and↓indicatethepolarizationofaquarkalong ↑ ↓ thehadron-spindirection,inthesensethatitis“unpolarized"-quarkdistributioninatensor-polarized spin-1hadron. Thestructurefunctionb canbe calculatedby thestandardconvolutionpictureforthe deuteron 1 in terms of parton-momentumdistributions convolutedwith nucleon momentumdistributions. The b is associated with tensorstructure ofthe deuteron,so thatD-wave admixtureshouldbe properly 1 considered for the convolution estimation. However, it is surprising to find an order-of-magnitude 6thInternationalConferenceonPhysicsOpportunitiesatanElecTron-IonCollider differencebetweensuchastandard-modelestimateandexperimentaldataobtainedbytheHERMES collaboration, although the data have large errors. There are other theoretical-model calculations; however,wedonotstepintosuchtheoreticalmodelsinthisarticle,andwediscussprobabletensor- polarizeddistributionsfromtheHERMESdata. SuchaparametrizationwasstudiedinRef.[9]. Weconsiderthefollowingconstraintintheform ofb sumrule[10],whichwasobtainedinapartonmodelanditissimilartotheGottfriedsum: 1 1 dxb (x)=0 + dx 4δ u¯(x)+δ d¯(x)+δ s¯(x) , Z 1 9Z T T T h i dx 1 2 [Fp(x)−Fn(x)]= + dx[u¯(x)−d¯(x)]. (5) Z x 2 2 3 3Z As the Gottfried-sum-ruleviolation created a field of flavor-symmetric light-antiquarkdistributions (u¯ , d¯) [11], a finite b sum could indicate a finite tensor-polarized antiquark distribution, which 1 cannot be expected from ordinary theoretical ideas. For the time being as the first-step study, we neglectsuchexoticcontributionsandconsiderthecondition dxb (x)=0forconstrainingthetensor 1 distributions. R Asthefirsttrial,weconsiderthecasethatacertainfraction(δ w)ofunpolarizedPDFsistensor T polarized in the deuteron [9]: δ qD(x) = δ w(x)qD(x), δ q¯D(x) = α δ w(x)q¯D(x) for the tensor- T iv T iv T i q¯ T i polarized parton distributions. Here, we assume a common function δ w(x) for both quarks and T antiquarksexceptfor a differentoverallconstantα . Now, the problembecomeshow to determine q¯ δ w(x). We assume that the valence-quarkdistributions should satisfy the sum dx(b ) = 0. T 1 valence Then,thefunctionδ w(x)shouldhaveanodeatleast,sowemaytaketheparamRetrizationδ w(x) = T T axb(1− x)c(x − x). Here, a, b, and c are the parametersdeterminedby the analysis, and the node 0 positionx isexpressedbytheotherparametersasx = dxxb+1(1−x)c(u +d )/ dxxb(1−x)c(u + 0 0 v v v d ) duetothe sumrule. Sucha nodealso existsin b cRalculatedbythe convolutRionmodelwith the v 1 D-stateadmixture. Wetriedtwoscenariosdependingonwhetherornottheantiquarktensorpolarizationexists: • Set1: Tensor-polarizedantiquarkdistributionsareterminated(α =0). q¯ • Set2: Finitetensor-polarizedantiquarkdistributionsareallowed(α isaparameter). q¯ The parameters are determined by a χ2 analysis in each case. Determined b and tensor-polarized 1 PDFsareshowninFigs. 3and4. Therearetwo curvesinFig. 3forthesets1and2. Itisobvious fromthisfigure,withintherestrictionoftheusedparametrization,theHERMESdatacannotbeex- plainedwithoutthe antiquarktensor polarization. Namely, χ2 is muchlarger for the set-1 analysis. TheobtainedtensordistributionsareshowninFig. 4. Thedashedcurveindicatesthevalence-quark distributionintheset1. Thesolidanddottedcurvesindicatethevalence-quarkandantiquarkdistri- butionsintheset2. Thevalence-quarkdistributionisnegativeatlargex(>0.3)andthenitturnsinto Figure3.Obtainedb andHERMESdata[9]. Figure4.Determinedtensor-polarizeddistributions[9]. 1 TheJournal’sname positiveatx≃0.2. Theantiquarkdistributionsareespeciallylargeatsmallx(<0.1).Sincethereare onlyafewdatapointsatthisstage,therearelargeuncertaintiesforthedistributions. Infuture,weneedtheoreticalandexperimentaleffortsonb physics.Onthetheoryside,weneed 1 tounderstandtheobtainedtensor-polarizeddistributionsinFig. 4byappropriatetheoreticalmodels. The standard deuteronmodelwith the D-state admixturecannotexplain the distributionsbecause a typicalconvolution-modelestimateisone-order-of-magnitudesmallerthanthevaluesinFig. 4. We need to investigate more exotic hadronic mechanisms. At the same time, experimental efforts are neededto measureb muchaccuratelybecausethere are onlya few data pointsas shownin Fig. 3 1 with the large errors. However, it is fortunate that the JLab b experiment was approved, and the 1 measurementwillstartinafewyears[8]. Ontheotherhand,therearepossibilitiesforinvestigating the antiquarktensorpolarizationbypolarizedDrell-Yanprocesses, such as p+d~ → µ+µ− +X and π+d~ → µ+µ− + X, at hadronfacilities, such as Fermilab-MI,RHIC, CERN-COMPASS, J-PARC, GSI-FAIR,andU70[12]. Forexample,atensorspinsymmetryin pd~Drell-Yanisgivenby e2q¯(x )δ q(x ) A (largex )≃ i i i 1 T i 2 , (6) UQ0 F P e2q¯ (x )q(x ) i i i 1 i 2 so that δ q can be measured directly. It is similPar to the case that u¯/d¯ , 1 was clarified by the T i Drell-YanexperimentalthoughitwassuggestedbytheGottfried-sum-ruleviolation[11]. Acknowledgements ThisworkwassupportedbyMinistryofEducation,Culture,Sports,ScienceandTechnology(MEXT) KAKENHIGrantNo. 25105010. References [1] D. F. Geesaman, K. Saito, and A. W. Thomas, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995); L. Frankfurt,V.Gusey,andM.Strikman,Phys.Rept.512,255(2012). [2] See http://nuint.kek.jp/ for activities of neutrino-nucleon interaction collaboration at J-PARC branch of KEK theory center; Y. Hayato, M. Hirai, W. Horiuchi, H. Kamano, S. Kumano, T. Murata,S.Nakamura,K.Saito,M.Sakuda,andT.Sato,tobesubmittedforpublication. [3] M.Hirai,S.Kumano,andT.-H.Nagai,Phys.Rev.C76,065207(2007). [4] K.J.Eskola,H.Paukkunen,andC.A.Salgado,JHEP04,065(2009);D.deFlorian,R.Sassot,P. Zurita,andM.Stratmann,Phys.Rev.D85,074028(2012);K.Kovariketal.,arXiv:1509.00792. [5] I. Schienbein et al., Phys. Rev. D 77, 054013 (2008); D 80, 094004(2009); K. Kovarik et al., Phys.Rev.Lett.106,122301(2011). [6] S.Kumano,J.Phys.:Conf.Series543,012001(2014). [7] A.Airapetianetal.(HERMESCollaboration),Phys.Rev.Lett.95,242001(2005); [8] ProposaltoJeffersonLabPAC-38,J.-P.Chenetal.(2011);K.Slifer,talkattheTensorPolarized SolidTargetWorkshop,March10-12,2014,JLab,NewportNews,USA. [9] S. Kumano, Phys. Rev. D 82, 017501 (2010); T.-Y. Kimura and S. Kumano, Phys. Rev. D 78, 117505(2008). [10] F.E.CloseandS.Kumano,Phys.Rev.D42,2377(1990). [11] S.Kumano,Phys.Rept.303,183(1998);G.T.GarveyandJ.-C.Peng,Prog.Part.Nucl.Phys. 47,203(2001);J.-C.PengandJ.-W.Qiu,Prog.Part.Nucl.Phys.76,43(2014). [12] X. Jiang and D. Keller, personal communications; S. Hino and S. Kumano, Phys. Rev. D 59, 094026(1999);60,054018(1999);S.KumanoandM.Miyama,Phys.Lett.B479,149(2000).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.