ebook img

Progress in Surface Science 1996: Vol 53 Index PDF

17 Pages·1996·2.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in Surface Science 1996: Vol 53 Index

PROGRESSI n Surface Science An International Review Journal EDITOR-IN-CHIEF: Professor Sydney G. Davison AUTHOR AND SUBJECT INDEX Volume 53, 1996 ©) PERGAMON Progress in Surface Science EDITOR-IN-CHIEF: EDITORIAL OFFICE PROF. SYDNEY G. DAVISON Applied Mathematics Department University of Waterloo Waterloo, Ontario MANAGING EDITOR: Canada N2L 3G1 PRUDENCE G. DAVISON Tel: (519) 885- 1211 (ext. 3161) Fax: (519) 746-4319 e-mail: [email protected] ADVISORY BOARD |.B ARTOS R.A.L. JONES T.N. RHODIN Academy of Sciences Dept of Physics, Cornell University Prague, Czech Republic University of Cambridge, Ithaca, New York, U.S.A. England A.W. CZANDERNA J.L. ROBINS NREL Golden, G. KELLOGG University of Western Australia Colorado, U.S.A. Sandia National Laboratories, Nedlands, W.A. 6009, Australia Albuquerque, New Mexico, J.G. DILLARD U.S.A. G. SCOLES Virginia Polytechnic Institute Princeton University, Princeton, and State University A. W. KLEYN New Jersey, U.S.A. Blacksburg, Virginia, U.S.A. FOM Institute for Atomic M. STESLICKA DIDS ELEY and Molecular Physics, University of Wroclaw University of Nottingham Amsterdam, The Netherlands Poland England D.M. KOLB H. UEBA F. FLORES University of Ulm Toyama University University of Madrid, Ulm, Germany Japan Madrid, Spain S. KONO M.A. VAN HOVE G. GUMBS Tohoku University University of California Hunter College Aobaku, Japan Berkeley, U.S.A. CUNY, New York, U.S.A. R.F. WILLIS A.G. NAUMOVETS V.E. HENRICH Pennsylvania State University Yale University, New Haven, Institute of Physics University Park, Pennsylvania, Connecticut, U.S.A. Kiev, Ukraine U.S.A E. ILISCA J.B. PENDRY K. ZHANG Université Paris VII Imperial College Fudan University, Shanghi, Paris, France London, England People’s Republic of China R. IMBIHL University of Hannover Germany Production Editor: Abigail Griffin. E-mail: a.griffin@ elsevier.co.uk Publishing, Subscription and Advertising Offices: Elsevier Science Ltd, Elsevier Inc., The Boulevard, 655 Avenue of the Americas, Langford Lane, New York, Kidlington, NY 10010, U.S.A Oxford OX5 1GB, U.K. Annual Institutional Subscription Rates 1997: Europe, The CIS and Japan 1516 Dutch Guilders. All other countries US$ 936. Dutch Guilder prices exclude VAT. Non-VAT registered customers in the European Community will be charged the appropriate VAT in addition to the price listed. Prices include postage and insurance and are subject to change without notice. PII: S0079-6816(98)00009-4 List of Contents, Volume 53, 1996 Electrical Double Layers at the Oil/Water Interface A. G. VOLKOV, D. W. DEAMER, D. L. TANELIAN and V.S. MARKIN Proceedings of the 18th International Seminar on Surface Physics Part 1 — Jochen H. Block Memorial Session Part 2 — Photoemission Part 3 — Adsorption and Desorption Part 4 — Diffusion Part 5 — Scattering Part 6 — Atomic Structure/Composition Part 7 — Clusters Part 8 — Other Topics PII: S0079-6816(98)00010-0 PROGRESS IN SURFACE SCIENCE AUTHOR INDEX Amos, A. T. 323 Kreuzer, H. J. 135 Bartynski, R. A. 155 Markin, V. S. | Bonzel, H. P. 287 Medvedev, V. K. 135 Borziak, P. G. 171 Miskovic, Z. L. 323 Brajczewska, M. 305 Modisette, J. P. 265 Budde, K. 205 Moresco, F. 331 Burrows, B. L. 323 Mroz, S. 197 Coenen, P. 287 Mullins, W. W. 287 Colonna, S. 253 Naumovets, A. G. 171 Dan’ Ko, D. B. 171 Nogueira, F. 315 Davison, S. G. 323 Nordlander, P. 265 Davoli, I. 253 Nowicki, M. 197 Deamer, D. W. | Osterwalder, J. 163 De Crescenzi, M. 253 Oumghar, E. 179 Deymier, P. A. 179 Perdew, J. P. 305 Djafari-Rouhani, B. 179 Pfniir, H. 205 Dobrzynski, L. 179 Rocca, M. 331 English, R. E. 323 Scheffler, M. 187 Ernst, N. 135 Schmidt, W. A. 135 Fanfoni, M. 253 Schwenger, L. 205 Fedorovich, R. D. 171 Soszka, W. 273 Fiolhais, C. 305, 315 Suchorski, Y. 135 Pus Fb. ¥ 2255 Surnev, S. 287 Goodman, F. O. 323 Tanelian, D. L. | Greber, T. 163 Tringides, M. C. 225 Gross, A. 187 Tsong, T. T. 233 Gunnella, R. 253 Turski, L. A. 241 Henriques, C. 315 Uebing, C. 297 Hulbert, S. L. 155 Vasseur, J. O. 179 Jankowski, Z. 197 Vieira, A. 305 Jensen, E. 155 Voges, C. 205 Kao, C.-C. 155 Volkov, A. G. | Kellogg, G. L. 217 Wang, R.L.C. 135 Kiyaev, O. E. 171 PII: S0079-6816(98)00011-2 PROGRESS IN SURFACE SCIENCE SUBJECT INDEX Activation energy Autoionization, Compton inelastic see also field desorption energy scattering 260-263 field desorption, Li from W(111) 139-141 Backscattering, secondary electrons, field evaporation, rhodium 150-152 extended fine-structure 253-263 Adlayers Barium oxide, evaporation, [Fs 173-174 critical phenomena, defect influence Binding energy 205-214 field desorption, Li from W(111) phase transitions, defect influence 139-141 205-214 field evaporation, rhodium 150-152 Adsorbed polymers, models 180-185 ledge atoms, surface step structures Adsorption 237-238 dissociative Born, Max, solvation 72-80 ro-vibrational effects H2/Pd(100) 187-195 Capacitance steering effects H2/Pd(100) ITIES 14-23 187-195 liquid double-layers Freundlich isotherm 49 ITIES 23-29 Frumkin isotherm 51 Parsons-Zobel dependencies Henry isotherm 49 29-32 Langmuir isotherm 49 CEJ see cluster embedded in jellium p(2x2) oxygen, on stepped Ru(0001) Charge-transfer theory 265-272 214 Cluster embedded in jellium (CEJ) 136, polymers 144, 149, 152 one-dimensional substrate Clusters 180-183 atomic, surface diffusion 217-223 three dimensional substrate energy, liquid drop model (LDM) 307 183-185 evanescent core pseudopotentials specific, liquid interfaces 35-44 318-320 Adsorption isotherms, interfaces 44—56 simple metal Aluminium, clusters 305-312 charge instability 305-312 Amphiphilic compounds, adsorption volume shift 305-312 isotherms 41, 44-56 Compton inelastic scattering, APECS see Auger-photoelectron autoionization 260-263 coincidence spectroscopy Computer simulation, [TIES 111-118 Auger decay, core-valence-valence (CVV) Copper(100), APECS spectra 158-161 156 Core-valence-valence (CVV) auger decay Auger-photoelectron coincidence 156 spectroscopy (APECS) 156-158 CVV see core-valence-valence (CVV) copper(100) spectra 158-161 Auger decay SUBJECT INDEX DAES see directional Auger electron Embedded atom method (EAM) 209-210, spectroscopy 221 DEPES see directional elastic peak Energy, surface free energy, anisotropic electron spectroscopy (DEPES) 288-290 Desorption Energy loss spectroscopy (ELS) 331-339 associative Equilibrium crystal shape (ECS) 287-288 ro-vibrational effects H2/Pd(100) Evaporation, silver, from Nickel surface 187-195 202-203 steering effects H2/Pd(100) EXFAS see extended fine autoionization 187-195 structure Dielectric permittivity Extended energy loss fine structure double-layer interfaces 71 (EELFS) 254, 256, 257 variable, interfaces 72-80 Extended fine autoionization structure Diffusion coefficients (EXFAS) surface 225-226 angular dependence 260 equilibrium vs non-equilibrium experimental evidence for 255-257 226-227 theoretical description of 257—260 Directional auger electron spectroscopy (DAES) 197-204 Fe-Cr-N system cosegregation 298-302 Directional elastic peak electron Fe-Si-V-C system cosegregation 302-303 spectroscopy (DEPES) 197-204 Field desorption Dispersion CEJ model 144 surface plasmons lithium Ag/Pd single crystals 333-337 experimental results measurement 333 interpretation 145-146 positive 337-339 Li layer source 145-146 low coverage 145 EAM see embedded atom method theoretical results 141-144 ECS see equilibrium crystal shape particle type 141 Edge vacancy diffusion 220-221 Field evaporation EELFS see extended energy loss fine CEJ model 149 structure rhodium Electrocapillary phenomena, liquid experimental results interfaces 14—23 interpretation 150-152 Electrolyte solutions, immiscible, interface experimental study 147-149 4 theoretical results 149-150 Electrolytes, immiscible interfaces, Field ion microscopy (FIM), cluster electrocapillary properties 14—23 diffusion 217-223 Electron diffraction, EXFAS angular Film thickness, condensed gases 279-284 dependence 260 FIM see field ion microscopy (FIM) Electron emission Finite barrier model (FBM) 268 nanomaterials, adlayer-covered Freundlich isotherms 49 171-178 Frumkin adsorption isotherm, amphiphilic silicon island films 176-177 compounds 44, 51-56 Electrostatic field, local, enhancement 142-144 Gold(111), surface morphology ELS see energy loss spectroscopy experiment 292-295 SUBJECT INDEX Gouy-Chapman theory 9, 29 image forces 59-69 electric double layer, metal/water ionic plasma 101-103 interfaces 69-72 continuous dielectric 101-103 MPB theory contrast 96-97 ITIES, ionic association/ligand Gouy-Chapman-Stern theory 69-72 binding 35 Grahame dependency 29 liquid miscibility 4 Green function, causal-surface 324-327 MPB model 99 polarizable 4~—7 H2/pd(100), adsorption/desorption potential distribution, ITIES 8-14 187-195 roughness, ITIES 56-59 HCA see hyperchain approximation Statistical theories 69-72 Helmholtz planes structure of, molecular dynamics adsorbed ions 35 118-122 MVN model 7 variable dielectric permittivity 72-80 Henry isotherms 49 lon-dipole plasma, charged interfaces High resolution angle resolved electron 103-109 energy loss spectroscopy (HREELS) Ion-scattering spectroscopy (ISS), 331-339 large/small angle 273-284 Holography, photoelectron, suppressed Ionic plasma, continuous dielectric, forward scattering 163-169 interfaces 101-103 HREELS see high resolution angle Island films (IFS) 171 resolved electron energy loss electron emission, metal overlayer spectroscopy effects 173-176 Hydration forces, electric double layers electropositive layers 173-174 84-91 light emission, metal overlayer effects Hydrogen, adsorption on Ni(1 11) 205-214 173-176 Hyperchain approximation (HCA) 71, 101 organic layers 174-176 silicon ICISS see impact collision ion scattering electron emission 176—177 spectroscopy light emission 176-177 IDL see independent diffuse layers ISS see ion scattering spectroscopy IFS see island films ITIES see Interface between two Image forces, interfaces 59-69 immiscibie electrolyte solutions (ITIES) Impact collision ion scattering spectroscopy (ICISS) 274, 275, 278 Kharkats-Ulstrup model 61-62 Independent diffuse layers (IDL), ITIES Koenig surfaces 5—7 contrast 114-118 Kohn-Sham density function theory 306, Interatomic spacing, [SS 274-279 318-320 Interface between two immiscible LAISS see large-angle ion scattering 56-59, 114-118 spectroscopy Interface response theory 180 Langmuir isotherms 49 Interfaces Large-angle ion scattering spectroscopy adsorption isotherms 44—56 (LAISS) 284 charged, ion-dipole plasma 103-109 Lattice Boltzmann gas model (LBG) 245 computer simulation, [TIES 111-118 Lattice gas models, surface diffusion electrocapillary phenomena 14-23 241-242 SUBJECT INDEX Lattice steps, surface atom mobility Multipie scattering, low energy ions, cold 233-234 metal surfaces 279-284 LBG see lattice Boltzmann gas model MVN see Modified Verwey-Niessen LDA see local density approximation model (MVN) LDM see liquid drop model LEED see low energy electron diffraction Nanomaterials, adlayer covered, Li-FDM see lithium field desorption photon/electron emissions 171-178 microscope Non-local electrostatics 80-84 Light emission, silicon island films 176-177 Oxygen, p(2x2), on stepped Ru(0001) 214 Liquid drop model (LDM) charged cluster energy 307-312 Parsons-Zobel dependencies 29-32 evanescent core pseudopotentials 320 PES see potential energy surface Lithium, field desorption, from tungsten Phase transitions 136-146 isotope effects, hydrogen on Ni(111) Lithium field desorption microscope 208-210 (LI-FDM) 137 oxygen impurity effects, hydrogen on Local density approximation (LDA) 306, Ni(111) 210-213 316, 317, 318 Photoelectron diffraction 163 Local reflection matrix (LORE) 189 Photoelectron holography 163-169 LORE see local reflection matrix Photon emission, nanomaterials, Low energy electron diffraction (LEED), adlayer-covered 171-178 hydrogen adsorption, Ni(111) 207-208 Platinum, cluster diffusion, Rh( 100) surface 218-223 MC see Monte Carlo method Polymers, adsorbed, vibrational properties Mean spherical approximation (MSA) 71, 179-186 101-109 Potential discontinuities, compact layers Metal surfaces, low energy ions, multiple 32-35 scattering 279-284 Potential energy surface (PES), Microscopes, lithium field desorption H2/Pd(100) 188-189 microscope (Li-FDM) 137 Potentials, immiscible interfaces, zero free Microscopy, field ion (FIM), cluster charge 14-23 diffusion 217-223 Potentiostats, four-electrode, double-layer Modified Poisson-Boltzmann (MPB) capacitance measurement 23-29 theory 71, 91-100 Pseudopotentials, evanescent core Modified Verwey-Niessen model (MVN) 315-321 7-14 development of 69-72 Recursive green-function method (RGFM) Molecular dynamics, interface structure 323-330 118-122 RGFM see recursive Green-function Monte Carlo method (MC), double layers method (RGFM) 109-111 Rhodium Monte Carlo simulation, surface diffusion cluster diffusion, Rh(100) surface 228 218-223 MPB see Modified Poisson-Boltzmann field evaporation of 147-152 theory Rydberg atoms, interactions, metal MSA see mean spherical approximation surfaces 266—268

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.