ebook img

Progress in Quantum Electronics 1991: Vol 15 Index PDF

11 Pages·1991·1.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in Quantum Electronics 1991: Vol 15 Index

AUTHOR INDEX Abeles, F. 200 Boyd, R. W. 264 Adams, A. 191, 192, 202 Boyton, F. P. 23 Adesida, I. 167 Bozhkov, A. I. 13, 27 Agranovich, V.M. 193 Braunstein, A. J. 203 Agrovsky, B.S. 47, 67, 78, 92, 93, 94, 112, 122, Braunstein, M. 203 127, 128, 130, 140 Brorson,S.D. 192 Aitken, A. N. 66 Brown, R. T. 23, 26 Akber, A. 198 Brown, W.R. 50 Akhmanov, S. A. 3, 18, 27, 35, 79, 92, 96 Brugger, H. 170 Akhtyrchenko, Yu. V. 3, 11 Bukaty, V.I. 9 Akita, K. 156 Buldakov, V.M. 78 Alckock, J. 11 Bunkin, F. V. 11, 13, 27 Aleshkevitch, V. A. 35, 79, 92, 142, 143 Busher, R.G. 92, 93, 103 Alexander, H. 154 Butler, J. K. 156, 157, 170 Alferness, R. 92, 125 Bykovski, A. Y. 197 Almayev, P. Kh. 92 Bylsma, R. B. 234, 235, 278, 279 Anan’ev, Yu. A. 257 Anderson, D. 42 Anderson, D. Z. 231 Camac, M. J. 6,7,8 Anikeev, I. Yu. 279, 280, 281, 282 Celli, V. 225 Antonishkis, N. Y. 161 Chambers, D. H. 150, 151 Apsley, N. 193, 220 Chanturiya, G. F. 13 Arakawa, E. T. 223 Chaporov,D. P. 9 Armand, N. A. 116 Charnotskii, M. I. 150, 151 Arsenyan, T. I. 3, 92 Chashey, I. V. 67, 77, 92, 125 Arya, K. 192 Chegotov, M. V. 248 Askaryan, G. A. 9, 11, 13, 30, 50, 53, 67 Chen, Y. 158, 166 Averbakh, V.S. 3,11, 12 Chen, Y.C. 166 Chen, Y. J. 223 Cherenkov, D. A. 190 Babichenko, S. M. 67, 92 Chesnokov, S.S. 47 Bailey, R. J. 167 Cheung, R. 167 Bakut, P. A. 3, 87 Chinn, J.D. 167 Ballantyne, J.(M) 158, 166, 167, 223 Chirkin, A. S. 3, 79, 87, 92 Banakh, V. A. 78, 150, 151 Chmil, A. I. 116 Bar-Chaim, N. 170 Chopra, K.L. 226 Barnard, J.J. 150, 151 Christy, R. W. 215 Basov, N. G. 231, 232, 245, 279 Chugunov, A. V. 14 Baumann, J. A. 161 Coleman, J.J. 158, 161, 166 Beach, R. 168, 169 Comaskey, B. 168, 169 Bednarz, J.P. 158 Courney, L. 13 Beernink, K. J. 158, 161, 166 Cowan, J.J. 223 Behfar-Rad, A. 167 Cronin-Golomb, M. 231, 232, 233, 235, 240, 241, Belenky, N.S. 92 279, 284 Belenov, E. M. 197, 227 Belic, M. 235, 264 Belokon, V. A. 23, 27 Dalby, R. J. 161 Belyayev, Ye. B. 3, 11 Danileiko, Yu. K. 50 Benett, W. 168, 169 Davis, L.C. 181, 215 Berger, P. J. 50, 58 Davis, R. J. 167 Bertaska, R. K. 157, 164, 165 Dawson, P. 193, 201, 202, 209 Beserman, R. 156 De Sanctis, J. L. 161 Bespalov, V.I. 28, 37, 67, 231, 232, 245, 279 Deardorff, J. M. 97, 127, 128 Betin, A. A. 3, 11, 12 Di Maria, D. J. Bissonette, L. R. 127 Dobson, P. S. Bogadaev, N. V. 271, 274 Dolin, L. S. Boivin, L. P. 187 Donnelly, J. P. 167 Bondarenko, N. G. 28 Dremina, S. I. 79, 92, 142, 143 Bondarev, A.D. 161 Dubovskii, P. E. 150, i51 Bonnedal, M. 42 Dunning, G. J. 231 Bour, D. P. 158 D’yakov, A. S. 150 ii AUTHOR INDEX Dyakov, Yu. Ye. 3, 79, 92 Goodhue, W.D. 167 Dyshko, A. L. 47 Gordeev, A. A. 234 Dzhidzhoyev, M.S. 14 Gordienko, V. M. 7, 18, 23 Gordin, M. P. 3, 22, 47, 92, 103, 142 Gordina, L. I. 92, 103, 142 Eason, R. W. 234, 235, 265 Gorokhov, Yu. A. 35 Efimkov, V. F. 231, 232, 245, 279, 281, 282 Gorshkov, V. A. 7, 23 Efremow, N. E. 167 Goryachev, L. V. 3, 11 Eliseev, V. V. 232, 242, 250, 262, 271, 273, 274, Gottschalk, H. 154 275, 278, 279, 283 Gracheva, M. Ye. (E) 16, 150, 151 Emde, F. 25 Gradshtein, I. S. 89 Endo, K. 155, 170 Granjoux, P. 167 Endriz,J.(G) 168, 193, 223 Grebenyuk, Yu.V. 29 Epperlein, P. W. 170 Grigoryev, F. V. 3, 11 Ettenberg, M. 156, 157, 158 Gudat, W. 215 Ewbank, M.D. 234, 235, 265 Guedes, J"M. P. 193, 219 Gulin, A. V. 49 Gurvitch, A. S. 3, 12, 16, 29, 67, 78, 92, 93, 94, Fabelinsky, I. L. 67 96, 97, 107, 111, 112, 115, 122, 123, 124, Fabian, K. B. 158 127, 128, 130, 133, 136, 140, 150, 151 Faisullov, F.S. 231, 232, 245, 279 Gustafson, T. K. 191, 193, 203, 219 Farrier, M. G. 193, 203, 219 Fedorchenko, A. T. 27 Feinberg, J. 234, 235, 265, 279, 287 Hagemann, H. 215 Feit, M. D. 23, 27, 32, 34, 47, 58, 139, 140 Hall, D. G. 210 Fekete, D. 158, 166 Hamada, K. 165 Feizulin, Z.I. 102 Hamm, R.N. 223 Felszerfalvi, J. 192, 193, 196, 202, 203, 204, 205, Handy, R. M. 203 206, 207, 208, 219, 221, 223 Hansma, P. K. 191, 192, 202 Ferguson, A.J. L. 193 Harding, C. M. 167 Fernandex, A. 167 Hardy, J. W. 3, 87 Fischer, S (E) 158, 166 Hartman, R.L. 154 Fischetti, M. V. 192 Hayakawa, T. 167 Fisher, B. 231, 232, 233, 234, 235, 238, 240, 241, Hayes, J. N. 23, 27, 66 245, 259, 265, 272, 279, 284 Heitmann, D. 185, 186, 187, 188, 189, 190, 193, Fisher, R. A. 231, 232 223, 225, 226 Fleck, J. A. 23, 27, 32, 34, 47, 58, 139, 140 Hellwarth, R. W. 232, 234 Fox, P. J. 198 Hemphill, R. 191 Frank, I. M. Henry, C. H. 170 Fujimoto, F. Henry, L. 167 Fujiwara, T. Herrmann, J. 87 Fukuda, M. Hijikata, T. 167 Furuse, T. Hill, D. S. 155, 156, 157, 162 Hirsch, P. B. 154 Hone, D. 190, 191, 210, 214 Galitch, N. Ye. 92 Hora, H. 11 Gamo, K. 167 Hu,C. 13 Gaponov, V. A. 3, 11, 12 Hughes, H. P. 193, 220 Garbuzov, D. Z. 161 Humphrey, L.M. 219 Garon, A.M. 96, 127, 128 Hutchinson, P. W. 154, 156, 157 Gauthier, D. J. 264 Gebhardt, F.G. 3, 7, 18, 23, 38, 39, 41, 50, 58, 64, 66, 92, 93 Ikeda, M. 157 Geis, M. W. 167 Imai, H. 162, 170 Gerasimov, B. P. 18 Ishida, K. 155 Gerry, E.T. 7 Ishida, T. 167 Gfeller, F.R. 172 Ishimaru, A. 3, 86, 92 Gibson, F. P. 34 Isozumi, S. 156 Gilbert, D. B. 158 Ivieva, L. 1. 271, 274 Ginzburg, V 185 Iwane, G. 162 Glaskov, D. A. 234, 279, 281, 282 Glass, A. M. 219, 234, 235, 278, 279 Glass, N. E. 188, 193, 223 Jackson, J.D. 189, 190 -Glicler, S. L. 3, 10 Jahnke, E. 25 Gochelashvili, K. S. 3, 67, 77, 92, 125 Jain, R. K. 191, 193, 203, 219 Gold, R. D. 156 Jeliseev, P. G. 227 Goldstein, R. J. 96, 127, 128 Jensen, H. E. 198 AUTHOR INDEX Jiang, J. P. 279, 287 Kurdi, B. N. 210 Johnson, P. B. 215 Kuzikovsky, A. V. 3, 10 Kuz’minov, Yu. S. 279, 280, 284, 286 Kuznetzov, M. F. 150, 151 Kabanov, M. V. 7 Kuzikovsky, A. V. 92, 150, 151 Kadiec, J. 219 Kalinovsky, V. V. 3, 11 Kallistratova, M. A. 47, 115, 127 Kamejima, T. 155, 156, 170 Laguchev, A. S. 92, 107, 140, 141 Kandidov, V. P. 42, 47, 67, 92, 107, 140, 141, 143 Laks, B. 190, 192, 202, 210, 214, 218 Kaneda, S. 226 Lamb, R. N. 193, 220 Karamzin, Yu. N. (I) 47, 87 Lambe, i 190, 191, 194, 199, 210 Karr, T. J. 150, 151 Landau,L.D. 19 Kasoyev, S.G. 13 Lang,D. V. 156 Katsavets, N. I. Larsen, R.S. 13 Kawano, H. 155 Latta, E. 170, 171 Kazumura, M. 165 Lebedeval, Le. a Kelley, P.L. 37 Lebedev, S.S. 79, 92, 142, 143 Keramidas, V.G. 155 Ledenev, V.I. 47, 67, 92, 140, 141, 143 Kern, D. 167 Lee, K. 167 Khait, Y.L. 156 Lee, Y. 167 Khmelevtsov, S. S. 3, 78, 92, 107, 111, 123, 124, Leopold, M.M. 155, 157, 162 133 Liao, P. F. 219 Khokhlov, P. B. 35 Lifshits, Ye. M. 19 Khokhlov, R. V. 23, 27 Lilly, J.Q. 47,92 Khomenko, A. E. 232 Lincoln, G. A. 167 Kim, J. 161 Lisiak, M. 42 Kimerling, L.C. 154, 156 Litvak, A.G. 28, 37, 67 Kirkby, P. A. 159, 161 Logan, R. A. 170 Kirtley, J. R. 192, 193, 200, 202, 204, 206, 223 Long, R.K. 6,8 Klavder, J. R. 123 Lésch,F. 25 Klyatskin, V.I. 28 Loskutov, V.S. 3, 10 Knoedler, C. 167 Lotkova, E.N. 150, 151 Kochergin, A. V. 161 Loudon, R. 188 Kogan, M.N. 23 Lugovoy, V.I. 27 Kolomensky, Al. A. 27 Lukin, V. P. 3, 47, 87, 150, 151 Kolosov, V. V. 9, 150, 151 Luskinovich, P. N. 197, 227 Komaki, K. 182 Lyakhov, G. A. 67 Komissarov, V.M. 13 Lyamshev, L.M. 13 Komiya, S. 157 Kompanetz, I. N. 227 Kon, A. I. 3, 78, 92, 107, 111, 123, 124, 133 Madhava-Menon, E. 162 Kondo, K. 156 Maeda, K. 155 Kondo, M. 167 Mamaev, A. V. 232, 234, 235, 265, 279, 280, 284, Kotani, T. 156 286, 287, 289, 290 Kontani, T. 170 Manenkov, A. A. 50 Konyayev, P. A. 47, 49, 92, 107, 140, 141, 143, Maradudin, A. A. 188, 225 144 Marchuk, G.I. 48, 49 Kopytin, Yu. D. 3, 10 Markin, O. A. 23 Korobkin, V. V. 81, 100 Marom, E. 231 Korol’kov, S. A. 279, 280, 284, 286 Martvel, F. E. 29, 115, 127 Korshunov, A. S. 271, 274 Matsui, J. 155 Koteles, E.S. 223 Matsumoto, Y. 155 Kravtsov, Yu. A. 3, 86, 92, 100, 102, 132 Matveyev, A. N. 79, 92, 142, 143 Kressel, H. 156, 157, 170 Mazed, M. 170 Kretschmann, E. 180, 187, 206 Mazur, A. 279 Krindach, D. P. 3, 18, 35, 92, 94, 96, 97, 107, McCarthy, S. L. 190, 191, 194, 199, 210 136, 140 McClatchey, R. A. 7 Kréger, E. 187, 188, 206 Meng, J.C. S. 23 Krolikowski, W. 235, 264 Merritt, F. R. 170 Krog, N. 192, 193, 196, 197, 202, 203, 204, 205, Meystre, P. 235, 264 206, 207, 208, 219, 221, 223, 225, 226 Michelis, G. 11 Kubarev, A. M. 67, 74 Migulin, A. V. 3, 18, 35, 96 Kubo, A. 155 Mikhailov, S. I. 231, 232, 234, 245, 279, 280, 281, Kucherov, A. N. 23 282 Kume, M. 165 Mikhalevitch, V. G. 50, 53 Kunz, C. 215 Miller, T. G. 34 iv AUTHOR INDEX Mills, D. L. 188, 190, 192, 193, 202, 210, 214, Pressley, R. J. 4,5, 6 218, 223, 225 Prokhorov, A. N. 50 Mironov, V. L. 3, 78, 92, 107, 111, 123, 124, 133 Prokhorov, A. M. 13 Mittelstein, M. 170 Monin, A. S. 93, 94 Mordukhovitch, M. I. 78 Qu-Chi He 234, 235, 265 Morimoto, M. 170 Quinn, H. F. 193, 201 Morris, J. R. 23, 27, 32, 34, 47, 58, 139, 140, 150, Quinn, J.J. 203, 222 151 Moser, A. 170, 171 Miihischlegel, B. 190, 191, 192, 210, 214 Raether, H. 178, 180, 189, 223 Mukhamad Zhanov, M. A. 67 Rafailov, E.U. 161 Mundinger, D. 168, 169 Ragul’skii, V. V. 231, 232, 245, 279 Murav’ev, N. A. 47, 50 Raizer, Yu. P. 3, 10, 11 Murray, J.R. 150, 151 Reiner, G. 264 Myakinin, V. A. 67, 81, 92, 93, 94, 96, 97, 107, Reisinger, A. R. 163 112, 136, 140, 150, 151 Rendell, R. W. 191, 192 Rhode, R. S. 92, 93, 103 Richardson, M.C. 11 Naito, H. 165 Richie, S. 165 Namba, S. 167 Ritchie, R. H. 223 Narum, P. 264 Robertson, M. J. 157 Naugolnykh, K. A. 13 Rogacheva, L. F. 233, 235, 240, 279 Nayyar, V. P. 35 Rogashkov, S. A. 116 Nerushev, A. F. 92 Romanenko, V.I. 227 Newman, D. (H) 156, 165 Rosengren, L.G. 18 Roza, A.J. 155, 157, 162, 167 Rozanov, N. N. 67 Odintsov, V. I. 233, 235, 240, 279 Rudenko, O. V. 23, 27 Odoulov, S. 279 Ruggieri, N. F. 158 Ognev, L. I. 22 Rushford, M. C. 150, 151 Oh, S. 170 Rutledge, J. E. 213, 214, 216, 218 O’Hara, S. 154, 156, 165 Rytov, S.M. 3, 86, 92, 100, 132 Okayasu, M. 165, 172 Ryzhik, I. M. 89 Olkhov, V.M. 81 Olson, D. H. 219, 234, 235, 278, 279 Oraeveski, A. N. 227 Sakamoto, M. 168 Orlov, S. S. 271, 274 Sakuma, I. 155 Otto, A. 180 Salzman, J. 156 Owechko, Y. 231 Samarsky, A. A. 47, 49 Sato, M. 155 Savransky, V. V. 11 Paicentini, W. J. 167 Sazonov, V.N. 81, 100 Paisiak, J. 23 Scalapino, D. J. 190, 191, 192, 210, 214 Panaioti, N. N. 279, 280, 281, 282, 283 Schulz, C. 223, 225, 226 Panchenko, V. Ya. 7, 23 Scifres, D. 168 Pasmanik, G. A. 67, 74, 78, 79, 231, 232, 245, Scott, A. M. 233, 235 279 Sedunov, Yu. S. 3, 10, 116 Patzer,G. 154 Segi, K. 162 Pearson, J. E. 50 Selby, J. E. A. 7 Pepper, D. M. 232, 234, 235 Semenov, L. P. 92 Petrischchev, V. A. 18, 42, 61, 66, 95, 99 Semyonov, A. A. 3, 92 Petroff, P.M. 154, 155, 156, 157, 162, 170 Semyonov, L. P. 3, 10, 116 Petrov, M. P. 232, 278 Serreze,H. B. 166 Picus, G. S. 203 Seymour, R. J. 223 Pierce, R. M. 213, 214, 216, 218 Shemetov, V. V. 29, 42, 47, 48, 50, 64, 67, 92, 99 Pilipetskii, N. F. 231, 232, 245, 279, 289 Shepard, A.H. 161 Pinchuk, S. D. 92, 116 Sheronova, N. M. 18, 61, 66 Platonenko, V.T. 14 Shimizu, H. 165 Platzmann, P.M. 177 Shipulo, G. P. 13 Pockrand, I. 223 Shipulo, J. P. 50, 53 Pokasov, V. V. 150 Shishov, V. I. 3, 67, 77, 92, 125 Polk, R. G. 34 Shkunov, V. V. 231, 232, 245, 279, 280, 284, 286, Polozkov, M. M. 271, 274 289 Popov, V.K. 14 Shmalgauzen, V.I. 87 Popovichev, V. I. 231, 232, 245, 279 Shumilov, E.N. 3, 10 Prescott, J. R. 198 Shustin, Ye. G. 116 AUTHOR INDEX Sica, L. 7 250, 252, 259, 261, 262, 264, 265, 271, 273, Sigal, G. B. 79 274, 275, 278, 279, 280, 281, 282, 283, 284 Silin, V. P. 232, 234, 235, 244, 248, 252, 261, 279, Tikhonova, N.S. 67, 81, 150, 151 280, 282, 284 Tomlinson, R.C. 11 Simmons, J. G. 196 Tomlinson, W. J. 195, 199 Sinev, S. N. 150, 151 Torikai, T. 170 Siu, D. P. 191 Tran, P. 225 Sivokon, V. P. 87 Troitsky, N. N. 3, 87 Skripkin, A.M. 116 Tsang, J.C. 192, 193, 200, 203, 204, 206, 223 Slayman, C. W. 193, 203, 219 Tsui, D.C. 190 Smalikho, I. N. 150, 151 Smirnov, V. A. 67 Smith, D.C. 3, 7, 10, 18, 22, 23, 26, 38, 39, 41, Ueda, O. 154, 155, 156, 157, 170 64, 65, 92, 93 Uehara, S. 165, 172 Smith III, T. 167 Uehara, Y. 194, 196, 218, 219 Smout, A. M. C. . 234, 235, 265 Uji, T. 156 Sobolev, A. G. 197, 226, 227 Ulrich, J.T. 34, 50, 58 Soboleva, E.M. 197 Ulrich, P. P. (B) 34, 50, 58, 66 Sodha, M.S. 35 Umebu, I. 157 Soffer, B. H. 231 Ungar, J. 170 Sokolov, A. V. 3, 22, 47 Ury, I. 170 Solarz, R. 168, 169 Ushioda, S. 194, 196, 213, 214, 216, 218, 219 Soltz, B. (A) 158, 166, 167 Uskov, A. V. 197, 227 Sonek, G. J. 223 Ustinov, N. D. 3, 87 Soole, J.B. D. 193, 220 Sorokin, Yu. M. 47, 50, 79 Sparks, P.D. 218 Vaudiz, C. 167 Sperry, D. 168, 169 Vedenov, A. A. 23 Starunov, V.S. 67 Viecelli. J. A. 150, 151 Stepanov, S. I. 232, 278 Vlasov, S.I. 42, 95 Stepashkin, V.N. 67, 81 Volkovitsky, O. A. 3, 10, 116 Sternklar, S. 234, 235, 241, 245, 259, 265, 272 Vollmer, B. J. 155, 157, 162, 167 Stoneham, A.M. 156 Vorob’ev, V. V. 12, 13, 16, 19, 23, 29, 34, 35, 37, Street, J. L. 4,6 42, 47, 48, 50, 64, 67, 78, 81, 87, 92, 93, 94, Strelkov, G. M. 3, 10, 22, 47, 92, 103, 142 99, 106, 107, 112, 127, 128, 130, 140, 150, Streltsov, V. I. 27 151 Strohbehm, J. W. 3, 92 Vorontsov, M. A. 87 Studenov, V. B. 50, 53 Vysloukh, V. A. 22, 47 Studenov, V. V. 30, 50 Vysotsky, Yu. P. 3, 11 Sudarshan, E.C. G. 123 Sudo, H. 170 Sukhorukov, A. P. 3, 7, 10, 18, 23, 35, 47, 87 Waggot, P. 233, 235 Suyama, T. 167 Wagner, D. K. 155, 157, 162, 167 Suzuki, K. 194, 219 Wakefield, B. 157 Suzuki, T. 156 Wakita, K. 162, 165, 172 Sviridov, K. N. 3, 87 Wallace, T. 6, 7, 8, 23, 34, 36, 47, 48, 92 Svirkunov, P. N. 92 Walmsley, D. G. 193, 201, 202, 209 Szentirmay, Zs. 192, 193, 196, 197, 203, 204, 205, Wang, D. 234, 235, 265 206, 207, 208, 214, 215, 216, 218, 219, 223, Watanabe, J. 194, 196, 218, 219 225, 226 Waters, R.(G) 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167 Wayman, C. 161 Takabe, 226 Webb, D. J. 170, 171, 172 Takahash, K. 167 Weber, H. P. 195, 199 Takanashi, H. 162 Weber, M. (G) 188, 190, 193, 223 Takeshita, T. 165, 172 Weisberg, L.R. 156 Takeuchi, A. 194, 196, 218, 219 Weiss, S. 234, 235, 238, 241, 245, 265, 272 Takeuchi, S. 155 Welch, D. 168, 170 Takusagawa, M. 162, 170 Werner, O. 234, 235, 238, 265 Talanov, V.I. 28, 37, 42, 67, 95 Westervelt, P. J. 13 Tatarsky, V. I. 3, 28, 39, 67, 78, 86, 92, 100, 105, White, J. O. 231, 232, 233, 235, 240, 241, 279, 111, 132, 133 284 Temkin, H. 155 Whiteley, S. R. 191 Theis, T. N. 192, 193, 200, 202, 204, 206, 223 Willis, G. E. 97, 127, 128 Thomson, J. A. 23 Windhorn, T. H. 167 Tihanyi, P.L. 155, 157, 162, 167 Wolf, E.D. 167 Tikhonchuk, V. T. 232, 234, 235, 242, 244, 248, Wolff, P. A. 177 JPQE 15 Index-B vi AUTHOR INDEX Wong, S.S. 167 Zaskal’ko, O. P. 279, 280, 281, 282, 283 Wood, A.D. 7 Zavorotnyy, V. U. 150, 151 Wood, R. W. 198 Ze’Dovich, B. Ya. 231, 232, 245, 279, 289 Wyss, J.C. 191, 192, 202 Zemlyanov, A. A. 92 Zemlianov, A. A. 150, 151 Xie, L. Z. 191 Zeyher, R. 192 Zhang, S. 234, 235, 265 Yaglom, A. M. 93, 94 Zhang, Z. 234, 235, 265 Yamakoshi, S. 156 Zhanuzakov, M. G. 235, 259, 265 Yamamoto, S. 167 Zhigulin, S.N. 161 Yariv, A. 231, 232, 233, 234, 235, 240, 241, 279, Zhu, Y. 234, 235, 265 284 Zhukov, N. N. 279, 283 Yashin, V. Ye. 18, 61, 66 Van der Ziel, A. 18 Yasui, K. 226 Zipfel, C.L. 155 Ye, P. 234, 235, 265 Zory, P.S. Jr. 163 Yegorov, K. D. 23, 42, 46, 47, 92, 107, 140, 141 Zozulya, A. A. 232, 234, 235, 242, 244, 250, 252, Yeh, C. 50 259, 261, 262, 264, 265, 271, 273, 274, 275, Yellen, S. L. 158, 163, 166 278, 279, 280, 281, 282, 283, 284, 286, 287, Va F.E.L. 6,8 289, 290 Yonezu, H. 170 Zubarev, I. G. 231, 232, 234, 245, 279, 280, 281, York, P. K. 158, 161, 166 282 Youasa, T. 170 Zucker, E. 168 Yuba, Y. 167 Zuyev, V. Ye. (I) 3,7, 9, 10, 92 Yusubov, F. M. 87 SUBJECT INDEX Abel equation for acoustic pressure 15 recombination-enhanced defect reactions Aberration-free thermal lens approximation 35-38, “REDR” 154-156, 172 41, 88, 99-103, 112 “phonon kick” model 156 Aerosol laser absorption 8-10 short lived large energy fluctuations theory Air ionization 10-11 “SLEF” 156 Argon laser 128 sudden failure 156-163 Atmospheric monitoring 1-146 dark line defects see darkline defects Atmospheric refraction 151 semiconductor fabrication 156— Diode laser fabrication 153, 167 Dislocation pinning mechanism 159 Banana self focusing thermal lens 30, 50 Distant heat source 123-124 Beam overlap region Double-metal topped diode 207-208, 211 beam squeezing 261, 282, 283 fully inside medium 242-247, 249, 255, 282 mostly outside 247-249, 255 Electron beam induced current micrograph Brillouin scattering 12, 141 “EBIC” 154 Electrostriction effect of laser beams in the atmosphere 43, 67 Camera, high-speed 81-82, 128 Energy gaps 223 Carbon dioxide laser (CO, laser) 150 “CO” laser 151 Extended thermal lens 107, 111, 112, 140 Clausius—Mossotti relationship 11 Combinational light scattering 12, 141 Conjugation fidelity 260, 264 “Fanning” incoherent scattering 238, 245, 273, Crystal 274, 276, 278 Ce-doped SBN 272, 284, 287, 290 Fog and cloud clearance 10, 116 cell fluid (parametric ring oscillator) Forced temperature scattering 67 acetone 280, 283 Frank-Ginzburg theory 185 carbon disulfide 280-282 Furutsu-Novikov formula 132 InP:Fe 278 potassium niobate (KNbO,) 291 Gratings Also see radiation (photon) field of a Dark line defects 154, 156 metal/insulator interface, periodically lifetime maps 154 modulated interface, holographic grating suppression of fabrication indium 159 holographic 290 high and low energy bandgap 161, 167 velocity 162 reflection 240, 241 refraction index 250 Defocusing of laser beam 45-47, 67-87, 87, 99, transmission 240, 251 107-111, 111-112 Diode laser degradation 153-174 Also see Dislocation pinning mechanism processing/handling-induced flaws 156 Heat halo 9-10 dislocation climb 154 Holographic grating fabrication 194, 204, 217, indium doping 159 218, 220, 226 dislocation glide 155 dispersion anomalies 222 peierls energy 155 Hot electron tunneling 189, 190, 192, 199-204, experimental observations 154 208, 219 “facet wearout” 154, 167-172 catastrophic optical damage (C.O.D.) 154, 170 Inclined laser beam path 117, 136 device wavelength 170 Inelastic electron tunneling spectroscopy facet surface coatings 170 (IETS) 190 gradual decline 155, 163-168 Intensity speckles 107, 125, 135 array heat problems 167-168 current-driven degradation 164-166, 171 Internal photoeffect (IPE) 193, 218, 219-222 fabrication of semiconductor device 167 laser cavity length 163 optically-driven degradation 164, 170, 171 Kerr effect 11, 43, 67 point defect generation 154, 156 Kolmogorov—Obukhov theory 127, 151 Vili SUBJECT INDEX Laser beam coherence media-photorefractive 234, 238, 287 see Thermal blooming media-stimulated brillouin scattering 234 Laser beam energy, characteristics in the mathematical description atmosphere 41-43 convection amplifier 245, 247, 265 Laser radiation absorption one-dimension approach 237-241, 270-271 aerosol absorption 8-10 oscillator 238, 240, 265, 289 atmospheric molecular absorption 4-6 three-dimensions approach 242-271, 265-270, cascade ionization 10 274, 287- convection within medium 18-23, 34, 125-131 self-pumped four-wave mixing conjugation forced convection 19-21 geometries 232 convection velocity 21-23 “bird wing” geometry 234 density changes of the medium 23-27 “bridge” geometry 234 evaporation of water drops 10 double phase-conjugative mirror 234, kinetic cooling 6-8, 150 238-240, 242-249, 271- light scattering from plasma region 11 eason and smout geometry 234 multiquantum absorption 10 “frog-legs” geometry 234 pre-ionization effect 10-11 two coupled double phase-conjugate sound generation in the atmosphere 13-18, 151 mirrors 234 variations with altitude 7, 133 two coupled passive ring oscillators 234 water vapour content 7, 151 two interconnected ring oscillators 265-271, Laser spectroscopy 4 287-291 carbon dioxide content 151 water vapour content 151 Laser types Narrow laser beam width 107-119 light source experimental results 112-117 argon-ion laser 290 Nonlinearity parameter 264, 275 He-Cd laser 271 helium-neon 284, 287 Nd:7AG 278 ruby 283 Oscillation mode 239 Otto method See Prism method Mandelshtamm-Brillouin scattering 12, 141 Metal-insulator—metal (MIM) structures 190 bulk plasmon 191 Peclet number 93 surface plasmon 191 Perturbation technique for laser beam propagation Metal-oxide-heavily doped semiconductor (MOS approximation 38-41, 67-81, 105, 108, 128, (P2+)) 191 133, 135, 143 Modeling of laser beam propagation in the Phase conjugation 231-291 atmosphere experimental results Also see Perturbation technique Also see crystal amplitude perturbations 91-92 equipment used 271-272, 278, 280, 284, 286 approximate method equations 27-47 media — photorefractive 232, 233, 253, 274, delay-type algorithm 89-90 279, 283, 284 diffraction effect 74-75, 77-78 media — stimulated brillouin scattering 232, discrete-time compensation 90-91 233, 280-283 distant heat source 123 mathematical description geometrical optics approximation 71-74, convection amplifier 245, 251, 281 75-77, 80-81, 105-107, 123, 131, 133, 144 low threshold modes 259 numerical simulation 139-141, 141-143, nonlinear theory for parametric ring 143-144 oscillator 262-264 phase-conjugate system 87-92, 151 one-dimension approach 235, 237-241, 259, phase-screen approximation 117, 127, 139 279 probabilistic description 93-97 oscillator 251, 280-283 mathematical Riemann method 244, 251, 256 component-wise splitting method 48—49 three-dimensions approach 235, 242-271, explicit three-layer differencing algorithm 274-278, 278, 280-283, 284— 47-48, 59 self-pumped four-wave mixing conjugation smooth perturbation equations 67-71, 120 geometries Momentum gap 222, 225 “cat” mirror 233-234 Monochromator, silica prism 198 double phase-conjugative mirror 271-278 Multiple-barrier sandwich triode 226-228 linear passive phase conjugative mirror 233 double barrier tunnel triode 226 one-mirror geometry 233, 241, 249-252, quantum well structures 227-228 278-279 Mutual conjugation 231-291 parametric ring oscillator 233, 240-241, 251, experimental results 252-262, 262-265, 279-283 equipment used 287, 290-291 semilinear passive phase mirror 233 SUBJECT INDEX “Phonon kick” model 156 Also see Laser radiation absorption Also see Diode laser degradation measurement of 18 Plasma oscillations in metals 176-182 theoretical examples 14 Also see tunnel diodes (MOM); metal-oxide- Spherical laser waves 111 heavily doped semiconductor Structure of the backreflected beam 283, 285-287, bulk plasmon 177-178 291 Ferrel mode 178, 181, 219 “Super-adaptation” 151 mie mode 181 “super resolution” 151 surface plasmon Surface plasmon polaritions (metals) curved surface photon emission 182 See Plasma oscillations in metals, surface experimental results 179, 193-199 plasmons. fast mode metal/dielectric interface plasmon 179, 202-204, 206 photon-plasmon coupling methods see Prism Thermal blooming of lasers 1-146, 150-151 method Also see Turbulent medium slow mode metallic/oxide interface defocusing in a turbulent medium 92-107 plasmon 179, 181, 192, 208 equations for approximate methods 27-47 Polaritons (dielectrics) instability of thermal defocusing See Plasma oscillations in metals, surface experimental results 81-87 plasmons. initial coherence of the laser radiation 78-81, Poynting vector 214, 215 133 Prism method 180 laser beam amplitude effects 105-107 attenuated total reflection geometry 180, 189, laser beam coherence 111-112, 119, 120-122, 193, 218, 220, 221 “ATR” 122-125, 142 experimental results 112-117, 122-125 Ring shaped beams in a moving medium 50-53 Radiation (photon) field of a metal/insulator specific first hermite-gauss functions 53-57 interface 182-190 temperature fluctuation effects 103-105, Bremsstrahlung radiation 190 125-131, 138-139 Cherenkov radiation 189-190 experimental results 127-131 dispersion function 184-185 thermal lens see Thin thermal, Banana emission caused by current fluctuations 207, self-focusing, Transonic aberration-free 208, 214 Thermal blooming of lasers methods of approximation 186-187 Also see Laser radiation absorption extinction theorem 188, 223 diffraction of laser beam 122-125 perturbation method 186-188 inclined path of laser Rayleigh wave method 187, 225 see (Inclined) Laser beam path periodically modulated interface 186-189, 193, power attenuation 123 204 Thermal conductivity polarization 204, 220 turbulent 131-136, 140 smooth interface 182-183, 199, 218, 220 Thermal spikes 197 transition radiation 185-186 Thin thermal lens approximation 9, 58, 111, 112, tunnel light emissions 222 140, 143, 151 Riemann method 244, 251, 256 short laser pulse 29 Transonic thermal lens Tunnel diodes, metal-oxide-metal “MOM” Scanning laser beam perturbations 27, 33, 136 Also see Radiation (Photon) field of a stagnation zone 33, 34, 58 metal/insulator interface Seeding light beams (scattering) 238, 239, 274 Also see Double-metal topped diode metal- Also see “Fanning” insulator-metal “MIM” diode, Multiple- convective instability 238, 243 barrier sandwich triode, Plasma oscillations oscillator (absolute) instability 238, 240 in metals, Radiation (photon) field of a Self-focusing of laser light 11, 43, 141 metal/insulator interface thermal self-focusing 43-45 back surface emission 193, 208, 210 Self-pumped four-wave mixing conjugation Bremsstrahlung radiation 190, 200 geometries electron-photon interaction in 175-230 See Phase conjugation, and Mutual conjugation light emission 176, 190, 197-199, 199-204 Short laser pulse 120, 125 periodically modulated interface 189, 190 instability 71, 144 Mathematical boundary equations 212-214 multimode 78-81 measurement of the light emitted 197-199 Short-lived large energy fluctuations theory equipment used 197-198 “SLEF” 156 calibration 198 Also see Diode laser degradation layer thickness 202-204 Sound generation by absorption of laser radiation MOM diode fabrication 195 in the atmosphere 13-18 metal evaporation rates 195-196, 211 acoustic pressure variation in the laser beam 16, oxide layer 195 26 working lifetime 197 SUBJECT INDEX periodically modulated M.O.M. 193 Turbulent medium, thermal blooming in a 92-107, trapezoidal gratings 193, 226 120-130, 13" -136, 136-139 polarity of bias 193, 208-209, 210, 220 Also see Variable wind velocity rough surface photon emission 186, 190, 192, mixing 34 193-199, 204-207, 217, 220 dispersion anomalies 222- small Au/Ag ball doped devices 181, 191 Variable wind velocity effects on thermal substrate preparation 193-195 blooming 57, 92-107, 125, 140 surface roughness 194 Also see Scanning laser beam perturbations surface plasmon experimental results 59-62 slow mode 191, 192, 208, 209, 212-219, forced temperature scattering 67 210-212 fast mode 192, 193, 206, 209 plasmon dispersion 223~234 Wide laser beams 120-145, 135 transition radiation 190 experimental results 122-145

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.