ebook img

Progress in Nanophotonics 6 PDF

179 Pages·2021·10.027 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in Nanophotonics 6

Nano-Optics and Nanophotonics Takashi Yatsui   Editor Progress in Nanophotonics 6 Nano-Optics and Nanophotonics Editor-in-Chief MotoichiOhtsu,ResearchOriginforDressedPhoton,Kanagawa,Japan SeriesEditors Ariando,DepartmentofPhysics,NationalUniversityofSingapore,Singapore, Singapore SoniaContera,PhysicsDepartment,UniversityofOxford,Oxford,UK ChennupatiJagadish,ResearchSchoolofPhysical,AustralianNationalUniversity, Canberra,ACT,Australia FedorJelezko,InstitutfürQuantenoptik,UniversitätUlm,Ulm, Baden-Württemberg,Germany GillesLerondel,ICD/CNRS-UMRSTMR6281,UniversitédeTechnologiede Troyes,TroyesCedex,France HitoshiTabata,GraduateSchoolofEngineering,TheUniversityofTokyo,Tokyo, Japan PeidongYang,CollegeofChemistry,UniversityofCalifornia,Berkeley,CA,USA Gyu-ChulYi,DepartmentofPhysics,SeoulNationalUniversity,Seoul,Korea (Republicof) TheSpringerSeriesinNano-OpticsandNanophotonicsprovidesanexpandingselec- tionofresearchmonographsintheareaofnano-opticsandnanophotonics,science- andtechnology-basedonopticalinteractionsofmatterinthenanoscaleandrelated topicsofcontemporaryinterest.Withthisbroadcoverageoftopics,theseriesisof usetoallresearchscientists,engineersandgraduatestudentswhoneedup-to-date referencebooks.Theeditorsencourageprospectiveauthorstocorrespondwiththem inadvanceofsubmittingamanuscript.Submissionofmanuscriptsshouldbemade totheeditor-in-chief,oneoftheeditorsortoSpringer. Moreinformationaboutthisseriesathttp://www.springer.com/series/8765 Takashi Yatsui Editor Progress in Nanophotonics 6 Editor TakashiYatsui ToyohashiUniversityofTechnology Toyohashi,Aichi,Japan ISSN2192-1970 ISSN2192-1989 (electronic) Nano-OpticsandNanophotonics ISBN978-3-030-71515-1 ISBN978-3-030-71516-8 (eBook) https://doi.org/10.1007/978-3-030-71516-8 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface to Progress in Nanophotonics Asthefirstexample,recentadvancesinphotonicsystemsdemanddrasticincreases inthedegreeofintegrationofphotonicdevicesforlarge-capacity,ultrahigh-speed signaltransmissionandinformationprocessing.Devicesizehastobescaleddown tonanometricdimensionstomeetthisrequirement,whichwillbecomeevenmore strict in the future. As the second example, photonic fabrication systems demand drastic decreases in the size of the fabricated patterns for assembling ultra-large- scaleintegratedcircuits.Theserequirementscannotbemetevenifthesizesofthe materialsaredecreasedbyadvancedmethodsbasedonnanotechnology.Itisessen- tial to decrease the size of the electromagnetic field used as a carrier for signal transmission,processing,andfabrication.Suchadecreaseinthesizeoftheelectro- magneticfieldbeyondthediffractionlimitofthepropagatingfieldcanberealized in optical near fields. Nanophotonics, a novel optical technology that utilizes the opticalnearfield,wasproposedbyM.Ohtsu(theeditorofthismonographseries)in 1993inordertomeettheserequirements.However,itshouldbenotedthatthetrue natureofnanophotonicsinvolvesnotonlyitsabilitytomeettheaboverequirements, but also its ability to realize qualitative innovations in photonic devices, fabrica- tiontechniques,energyconversion,andinformationprocessingsystemsbyutilizing novel functions and phenomena made possible by optical near-field interactions, which are otherwise impossible as long as conventional propagating light is used. Basedoninterdisciplinarystudiesoncondensedmatterphysics,opticalscience,and quantumfieldtheory,nano-materialsandopticalenergytransferinthenanometric regimehavebeenextensivelystudiedinthelasttwodecades.Throughthesestudies, novel theories on optical near fields have been developed, and a variety of novel phenomenahavebeenfound.Theresultsofthisbasicresearchhavebeenappliedto developnanometer-sizedphotonicdevices,nanometer-resolutionfabrication,highly efficientenergyconversion,andnovelinformationprocessing,resultinginqualita- tiveinnovations.Furtheradvancementintheseareasisexpectedtoestablishnovel opticalsciencesinthenanometricspace,whichcanbeappliedtofurtherprogressin nanophotonicsinordertosupportthesustainabledevelopmentofpeople(cid:2)slivesall over the world. This unique monograph series entitled Progress in Nanophotonics in the Springer Series in Nano-optics and Nanophotonics is being introduced to reviewtheresultsofadvancedstudiesinthefieldofnanophotonicsandcoversthe v vi PrefacetoProgressinNanophotonics mostrecenttopicsoftheoreticalandexperimentalinterestinrelevantfields,suchas classicalandquantumopticalsciences,nanometer-sizedcondensedmatterphysics, devices, fabrication techniques, energy conversion, information processing, archi- tectures,andalgorithms.Eachchapteriswrittenbyleadingscientistsintherelevant field.Thus,thismonographserieswillprovidehigh-qualityscientificandtechnical information to scientists, engineers, and students who are and will be engaged in nanophotonicsresearch.Ascomparedwiththepreviousmonographseriesentitled Progress in Nano-Electro-Optics (edited by M. Ohtsu, published in the Springer SeriesinOpticalScience),thismonographseriesdealsnotonlywithopticalscience onthenanometerscale,butalsoitsapplicationstotechnology.IamgratefultoDr. C. Ascheron of Springer-Verlag for his guidance and suggestions throughout the preparationofthismonographseries. Tokyo,Japan MotoichiOhtsu August2010 Preface to Volume VI Thisbookfocusesonvariousandmutuallyrelatedtopicsinnanophotonicswritten by the world’s leading experts. Following the elaboration of the idea of nanopho- tonics, much theoretical and experimental work has been carried out, and several novelphotonicdevices,high-resolutionfabrication,highlyefficientenergyconver- sion,andnovelinformationprocessingweredevelopedintheseyears.Noveltheo- retical models describing the nanometric light–matter interaction were also devel- oped. For reviewing and demonstrating this recent progress in nanophotonics, this bookfocusesonvariousandmutuallyrelatedtopicsinnanophotonicswrittenbythe world’sleadingexperts.Thefirstchapterdescribescontrollingtheexcitondynamics usingmetal/dielectricinterfacesforimprovinglightemittingdeviceswithquantum structures.Thesecondchapterisdevotedtodescribinganovelplatformforlight– moleculeinteractionsbythecombinationofultrashort-pulsedlaserandplasmonics inthemid-infraredrange.Thethirdchapterdescribesrecentprogressinthedevel- opmentofplasmon-inducedwatersplitting,especiallyphotoelectrochemicalwater splitting.Thefourthchapterdescribestheoreticalandcomputationalapproachesto describeultrafastandnonlinearopticalresponsesinnano-materialsbasedonabinitio time-dependentdensityfunctionaltheoryforunderstandingphenomenainnanopho- tonics. The last chapter describes an overview of optical spectroscopy of carbon nanotubeswithquiterichphysicsforfutureapplicationinphotonics.Thisvolume isavaluableresourceforreadersandfuturespecialistsinnanophotonics. Toyohashi,Japan TakashiYatsui August2020 vii Contents 1 HighlyEnhancedLightEmissionsfromInGaN/GaNBased onNanophotonicsandPlasmonics ............................... 1 KoichiOkamoto 1.1 Background of the InGaN/GaN-Based Light-Emitting Devices ................................................... 1 1.2 CharacterizationofExcitonDynamicsandOpticalProperties ..... 3 1.2.1 EmissionRatesandInternalQuantumEfficiencies ........ 3 1.2.2 OpticalPropertieswithSubmicrontoNanometerScale .... 6 1.2.3 DirectObservationofDiffusionandNonradiative ProcessesofExcitons ................................. 8 1.2.4 TemporallyandSpatiallyResolved Observations oftheExcitonDynamics .............................. 14 1.3 Controlling the Exciton Dynamics and Light Emissions BasedonNanophotonicsandPlasmonics ...................... 19 1.3.1 EmissionEnhancementbyFabricatedNanostructures ..... 19 1.3.2 OpticalPropertiesoftheSurfacePlasmonPolariton ....... 22 1.3.3 MechanismoftheSurfacePlasmon-EnhancedLight Emissions ........................................... 24 1.3.4 Enhanced Mechanism and Exciton Dynamics withSubmicrontoNanometerScale .................... 28 1.4 Summary .................................................. 32 References ..................................................... 33 2 Ultrafast Infrared Plasmonics—A Novel Platform forSpectroscopyandQuantumControl .......................... 37 SatoshiAshiharaandIkkiMorichika 2.1 UltrafastPlasmonicsintheMid-Infrared ....................... 37 2.1.1 NanoscaleLocalizationofUltrashortPulses ............. 37 2.1.2 Light–MatterInteractionintheMid-InfraredRange ....... 38 2.1.3 A Novel Platform for Vibrational Spectroscopy andQuantumControl ................................. 39 2.1.4 Outline ............................................. 40 ix x Contents 2.2 Mid-IRPlasmonics ......................................... 40 2.2.1 SurfacePlasmonPolaritononGold ..................... 40 2.2.2 GoldNanoantennas .................................. 42 2.3 MeasurementofPlasmonicNear-FieldUsingField-Driven Photoemission ............................................. 45 2.3.1 Field-DrivenPhotoemission ........................... 46 2.3.2 NonlinearPhotoemissionExperiments .................. 47 2.3.3 EstimationofPlasmonicNear-Field .................... 49 2.3.4 SummaryonField-DrivenPhotoemission ............... 50 2.4 Antenna-EnhancedNonlinearInfraredSpectroscopy ............ 50 2.4.1 VibrationalSpectroscopywithInfraredUltrashort Lasers .............................................. 51 2.4.2 Surface-EnhancedInfraredAbsorptionSpectroscopy ...... 52 2.4.3 Near-FieldEnhancementsbyDiffractivelyCoupled NanoantennaArrays .................................. 52 2.4.4 LinearSpectroscopyofAntenna–MoleculeSystem ....... 53 2.4.5 Pump-ProbeSpectroscopy ofAntenna–Molecule System ............................................. 55 2.4.6 Summary ........................................... 57 2.5 Reaction Control via Antenna-Enhanced Vibrational Excitation ................................................. 58 2.5.1 VibrationalControlofChemicalReactions .............. 58 2.5.2 VibrationalLadderClimbingwithDown-Chirped Pulses .............................................. 60 2.5.3 Antenna-EnhancedVibrationalLadderClimbing ......... 61 2.5.4 CODissociationInducedbyChirp-PulsedNear-Fields .... 62 2.5.5 Summary ........................................... 65 2.6 SummaryandProspects ..................................... 66 References ..................................................... 67 3 PlasmonicPhotochemicalWaterSplittingforEfficientSolar EnergyConversion ............................................. 71 XuShiandHiroakiMisawa 3.1 Introduction ............................................... 71 3.2 MechanismsofPlasmonicEnhancement ....................... 72 3.2.1 Plasmon-InducedElectronTransfer ..................... 73 3.2.2 Near-FieldEnhancement .............................. 75 3.2.3 PlasmonResonanceEnergyTransfer .................... 75 3.3 PlasmonicWaterSplitting ................................... 76 3.3.1 PlasmonicWaterOxidation ............................ 76 3.3.2 Interfacial Structure Effects on Plasmonic Water Oxidation ........................................... 83 3.3.3 Self-assistedPlasmonicWaterSplitting ................. 86 3.3.4 PlasmonicWaterSplittingonThree-Dimensional Structures ........................................... 88

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.