MATHEMATICS IN INDUSTRY S Editors Hans-Georg Bock Frank de Hoog Avner Friedman Arvind Gupta Helmut Neunzert William R. Pulleyblank Torgeir Rusten Anna-Karin Tornberg THE EUROPEAN CONSORTIUM FOR MATHEMATICS IN INDUSTRY E C M I SUBSERIES Managing Editor Vincenzo Capasso Editors Robert Mattheij Helmut Neunzert Otmar Scherzer Springer-Verlag Berlin Heidelberg GmbH Andris Buikis Raimondas Ciegis Alistair D. Fitt Editors Progress in Industrial Mathematics at ECMI 2002 With 132 Figures Springer EditOTS Andris Buikis Alistair D. Fitt Un iversity of Latvia University Southampton Latvia Science and Dialogue Centre Faculty of Mathematical Studies Laukums Akademijas 1/1 S017 1BJ Southampton 1524 Riga, Latvia United Kingdom e-mail: [email protected] Raimondas Ciegis Vilnius Gediminas Technical University Akademijas Iauk. 1 2054 Vilnius, Lithuania e-mail: [email protected] Cataloging-in-Publication Data applied for A catalog record for this book is available from the Library of Congress. Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de. Cover figure is taken from page 397, Fig. 4. The interactions of two sets of solitary waves give rise to the regime of chemical turbulence. Mathematics Subject Classification (2000): OOB20; 62-XX, 65-XX, 68-XX, 70-XX, 73-XX, 76-XX, 78-XX, 80-XX, 82-XX, 90-XX, 92-XX, 93-XX, 94-XX ISBN 978-3-642-07262-8 ISBN 978-3-662-09510-2 (eBook) DOI 10.1007/978-3-662-09510-2 This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution under the German Copyright Law. springeronline.com © Springer-Verlag Berlin Heidelberg 2004 Originallypubli8hed by Springer-Verlag Berlin Heidelberg New York in 2004 Softcover reprint of the hardcover 18t edition 2004 The use of registered names, trademarks, etc. in this pnblication does not imply, even in the absence of a specific statement, that snch names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset by the authors using a Springer TEX macro-package Cover design: design & production GmbH, Heidelberg SPIN: 10930472 46/3142 YL -5 43 2 1 o Printed on acid-free paper Preface This volume contains the proceedings of the twelfth conference of the Euro pean Consortium for Mathematics in Industry. ECMI was founded in 1986 in order to foster research and education in Mathematics in Industry in Europe and these biannual conferences are the show case for ECMI's research. It is a pleasure to see that six of the plenary speakers have submitted papers for this volume. Their contributions illustrate the breadth of applica tions and the variety of mathematical and computational techniques that are embraced by ECMI. ECMI is also committed to the education of students and it is encouraging that a number of the papers are given by students. The Wacker Prize, which is offered for a Masters Level thesis on an industrial problem, always attracts excellent entries and this year's winner, Nicole Marheineke, is no exception. This is the first time that an ECMI conference has been held in Eastern Europe and the ECMI Council is very grateful to Professor Andris Buikis and his colleagues in Latvia and Lithuania for the excellent job they have done. Thanks too go to the European Union which supported 30 delegates at this conference via TMR Contract No ERBFMRXCT 97-0117 'Differential Equations in Industry and Commerce'. The final meeting of this network was held during this conference which provided a platform for network members to describe their work to a wider audience. Finally I would like to thank the editors of this volume - Professor Andris Buikis, Professor Raimondas Ciegis and Professor Alistair Fitt - for all their hard work in preparing this material for publication. 13th August 2003 Hilary Ockendon President of ECMI Contents Plenary Talks Mathematical Modeling is a Source of Novel Mathematical Problems Raimondas Ciegis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Shallow Water Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Correctness of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Asymptotic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Numerical Approximation of Weakly Damped Nonlinear Schrodinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 Crank-Nicolson Approximation............................ 6 3.2 Reformulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Splitting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Liquid Transport in the Multilayered Media . . . . . . . . . . . . . . . . . . . . . 8 5 Full Flux Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 References ...................................................... 12 Parameter Identification in Industrial Problems via Iterative Regularization Methods Heinz W. Engl, Philipp Kiigler ..................................... 13 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Nonlinear Inverse Problems and Their Regularization . . . . . . . . . . . . . 14 3 Identification of Doping Profiles in Semiconductors . . . . . . . . . . . . . . . 17 4 A Parameter Identification Problem in Car Windshield Design . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Mathematics of Enhanced Oil Recovery V.M. Entov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 Two-Phase Flow and Oil Displacement .......................... 31 VIII Contents Oil Displacement with an Active Additive Solution 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 Oil Displacement by Gas Injection 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 References 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 Business Modelling. Languages and Tools Audris Kalnins 0 0 0 0 0 0 0 o 0 0 0 o o o 0 0 0 o 0 0 0 o 0 0 o o 0 0 0 o o 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 What is Business Modelling 1 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 Business Process Modelling Languages 2 0 0 o o 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 Classical BM Languages 201 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 UML Activity Diagrams for Business Modelling 202 0 0 0 0 0 0 0 0 0 0 0 0 0 45 Contribution of IMCS LU in Business Modelling- GRADE 3 0 0 0 0 0 0 0 0 46 Generic Approach to Business Modelling 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 References 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 Modelling Tumour Growth and Progression Luigi Preziosi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 Modelling Path 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 Modelling Scales 2 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 Modelling the Growth of Thmour Masses 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 4 Fluid-Dynamic and Kinetic Model of Vasculogenesis and Angiogenesis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 Thmour Progression 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62 References 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 Interaction of Viscous Mean Flows and Surface Waves at Low Viscosity Josee Mo Vega 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 Introduction 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 Faraday Waves in Annular Containers 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 Non-modulated Waves 201 o 0 o o 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 Modulated Waves 202 0 o o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 Concluding Remarks 3 0 0 0 0 0 0 0 0 0 o 0 o o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 References 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0 o o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 Modified FEM for Fibre-Fluid Interactions Nicole Marheineke o o o 0 o o o o 0 o o 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 Introduction 1 o 0 o o o o o o o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 Model of the Fibre's Dynamic 2 0 0 0 o 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 Construction of Approximation Spaces 3 o o o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 Basic Convergence Theory for PUM 3ol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 Coupling PUM with Particle Method 302 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84 Quality of the Fibre Cover 4 0 0 0 0 0 0 o 0 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 Quality Criterion 86 401 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Application and Results 5 o 0 o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87 Conclusion 6 o 0 0 o o 0 0 o 0 0 o o 0 0 o o 0 o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 References 0 0 0 0 0 0 0 0 0 o o o o o o 0 o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 Contents IX Minisymposia Mathematical Modelling in Paper Industry Organizers: J. Cepit is, R. Ciegis Numerical Investigation of the Geometrical Factor for Simulating the Drying of Wood Romas Baronas, Feliksas Ivanauskas, Mifodijus Sapagovas. . . . . . . . . . . . . 95 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2 Wood Drying Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3 Reliability of 1-D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4 Results of Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Phase Plane Analysis of Web Drying Janis Cepztis .................................................... 101 1 Introduction ................................................. 101 2 Suppositions and Notation ..................................... 101 3 Phase Plane Equation ......................................... 102 4 Conclusions .................................................. 104 4.1 Evaluation of Physical Parameters ......................... 104 4.2 Steam Temperature in Drying Cylinders .................... 105 4.3 Temperature Distribution in Series of Drying Cylinders ....... 105 5 Acknowledgements ........................................... 105 References ...................................................... 105 Parameters Identification for Wood Drying Raimondas Ciegis, Vadimas Starikovicius, Arturas Stikonas ........... 107 1 Introduction ................................................. 107 2 Mathematical Model and Finite-Difference Schemes ............... 108 3 Parameter Identification ....................................... 109 4 Conclusions .................................................. 111 References ...................................................... 111 Numerical Methods in Multib ody Dynamics Organizers: M. Arnold, C. Bottasso, C. Fuehrer, M. Gerdts Numerical Methods in the Simulation of Vehicle-Guideway Interaction Martin Arnold ................................................... 115 1 Introduction ................................................. 115 2 Simulation of Vehicle Dynamics ................................ 116 3 Dynamical Simulation of Road and Railway Bridges .............. 117 X Contents 4 Co-Simulation of the Coupled System Vehicle-Guideway .......... 118 5 Practical Application ......................................... 119 References ...................................................... 119 Parameter Optimization in Mechanical Multibody Systems and Linearized Runge-Kutta Methods Matthias Gerdts ................................................. 121 1 Problem Formulation ......................................... 121 2 Linearized Runge-Kutta Methods .............................. 122 2.1 Order Conditions for ODE's ............................... 123 2.2 Order Tests for DAB's .................................... 123 3 Examples ................................................... 124 3.1 Pendulum Chain ......................................... 124 3.2 Parameter Identification in a Truck Model .................. 125 4 Conclusion .................................................. 125 References ...................................................... 125 Using AD-generated Derivatives in Optimal Control of an Industrial Robot Roland Griesse, Andrea Walther ................................... 127 1 Introduction ................................................. 127 2 The Discretized Problem ...................................... 129 3 Using Automatic Differentiation ................................ 129 4 Numerical Results ............................................ 130 References ...................................................... 131 Applications to Traffic Breakdown on Highways Jevgenijs Kaupuis, Hans Weber, Julia Tolmacheva, Reinhard Mahnke .. 133 1 Introduction to Physics of Traffic ............................... 133 2 Optimal Velocity Model (OVM) of Traffic Flow .................. 133 3 Phase Transitions in the Optimal Velocity Traffic Model ........... 135 4 Bifurcation Diagrams and Critical Exponents .................... 136 References ...................................................... 138 Runge-Kutta-Nystrom-Methods with Maximized Stability Domain for Stiff Mechanical Systems Christoph Lunk, Bernd Simeon .................................... 139 1 The Problem Class ........................................... 139 2 Time Integration Schemes ..................................... 140 3 Maximizing the Stability Domain ............................... 141 4 Numerical Examples .......................................... 143 References ...................................................... 144 Contents XI Problems of Charge and Spin Transport in Semiconductor Devices Organizers: L. Bonilla, J. Soler Free Boundary Problems Describing Two-Dimensional Pulse Recycling and Motion in Semiconductors Ramon Escobedo, Luis L. Bonilla, Francisco J. Higuera ............... 147 1 Introduction ................................................. 147 2 The Free Boundary Problem ................................... 148 3 Exact Solution in Simple Geometries ............................ 150 References ...................................................... 152 Mobility for Silicon Semiconductor Derived from the Hydrodynamical Model Based on the Maximum Entropy Principle Vittorio Romano ................................................. 153 1 The Energy Transport Model .................................. 153 2 The Drift-Diffusion Limiting Model ............................. 154 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. 15 7 Random Domain-Relocation Times in Semiconductor Superlattices: A Stochastic Discrete Drift-Diffusion Approach 0. Sanchez, L.L. Bonilla, J. Soler ................................. 159 1 Introduction ................................................. 159 2 Stochastic Discrete Drift-Diffusion Model ........................ 160 3 Numerical Results ............................................ 161 References ...................................................... 163 Scientific Computing in Electronic Industry Organizers: M. Giinther, J.W. ter Maten A Priori Estimates for Multiphysics Models in Electric Circuit Design Giuseppe Ali, Andreas Bartel ...................................... 167 1 Introduction ................................................. 167 2 Set up of the Multiphysics Model ............................... 167 3 A Priori Estimates ........................................... 168 4 An Existence Result .......................................... 170 5 Conclusions .................................................. 171 References ...................................................... 171 Preconditioned Splitting in Dynamic Iteration Schemes for Coupled DAE Systems in RC Network Design Michael Gunther ................................................. 173 1 Introduction ................................................. 173 2 Topological Properties ........................................ 17 4