ebook img

Progress in High-Dimensional Percolation and Random Graphs PDF

285 Pages·2017·2.511 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in High-Dimensional Percolation and Random Graphs

CRM Short Courses Markus Heydenreich Remco van der Hofstad Progress in High- Dimensional Percolation and Random Graphs CRM Short Courses SeriesEditor GaliaDafni,ConcordiaUniversity,Montreal,QC,Canada EditorialBoard MireilleBousquet-Mélou(CNRS,LaBRI,UniversitédeBordeaux) AntonioCórdobaBarba(ICMAT,UniversidadAutónomadeMadrid) SvetlanaJitomirskaya(UCIrvine) V.KumarMurty(UniversityofToronto) LeonidPolterovich(TelAvivUniversity) ThevolumesintheCRMShortCoursesserieshaveaprimarilyinstructionalaim,focusing onpresentingtopicsofcurrentinteresttoreadersrangingfromgraduatestudentstoexperi- encedresearchersinthemathematicalsciences.Eachtextisaimedatbringingthereaderto theforefrontofresearchinaparticularareaorfield,andcanconsistofoneorseveralcourses with a unified theme. The inclusion of exercises, while welcome, is not strictly required. Publicationsarelargelybutnotexclusively,basedonschools,instructionalworkshopsand lectureserieshostedby,oraffiliatedwith,theCentredeResearchesMathématiques(CRM). Specialemphasisisgiventothequalityofexpositionandpedagogicalvalueofeachtext. Moreinformationaboutthisseriesathttp://www.springer.com/series/15360 Markus Heydenreich (cid:2) Remco van der Hofstad Progress in High-Dimensional Percolation and Random Graphs MarkusHeydenreich RemcovanderHofstad MathematischesInstitut DepartmentofMathematicsand Ludwig-Maximilians-UniversitätMünchen ComputerScience Munich,Bayern EindhovenUniversityofTechnology Germany Eindhoven TheNetherlands CRMShortCourses ISBN978-3-319-62472-3 ISBN978-3-319-62473-0(eBook) DOI10.1007/978-3-319-62473-0 LibraryofCongressControlNumber:2017945258 MathematicsSubjectClassification(2010):60K35,60K37,82B43 ©SpringerInternationalPublishingSwitzerland2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafter developed. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelieved tobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawar- ranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhave beenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisbookfocusesonpercolationonhigh-dimensionallattices.Wegiveageneralintroduction topercolation,statingthemainresultsanddefiningthecentralobjects.Weassumenoprior knowledge about percolation. This text is aimed at graduate students and researchers who wishtoenterthewondrousworldofhigh-dimensionalpercolation,withtheaimtodemystify thelace-expansionmethodologythathasbeenthekeytechniqueinhighdimensions.Thistext canbeusedforreadingseminarsoradvancedcoursesaswellasforreferenceandindividual study.Theexpositioniscomplementedwithmanyexercises,andweinvitereaderstotrythem outandgaindeeperunderstandingofthetechniquespresentedhere.Letusnowsummarize thecontentinmoredetail. We describe mean-field results in high-dimensional percolation that make the intuition that“farawaycriticalpercolationclustersareclosetobeingindependent”precise.Wehave two main purposes. The first main purpose is to give a self-contained proof of mean-field behavior for high-dimensional percolation, by proving that percolation in high dimensions hasmean-field criticalexponents ˇ D (cid:2) D 1,ı D 2and(cid:3) D 0,asforpercolation onthe tree. This proof is obtained by combining the Aizenman–Newman and Barsky–Aizenman differential inequalities, that rely on the triangle condition, with the lace-expansion proof ofHaraandSladeoftheinfraredboundthat,inturn,verifiesthetrianglecondition.While thereareexpositorytextsdiscussinglace-expansionmethodology,suchasSlade’sexcellent Saint-Flourlecturenotes,anintroductiontohigh-dimensionalpercolationdidnotyetexist. Asidefromtheseclassicalresults,thatarenowover25yearsold,oursecondmainpurpose is to discuss recent extensions and additions. We focus on (1) the recent proof that mean- field critical behavior holds for percolation in d (cid:3) 11; (2) the proof of existence of arm exponents; (3) results on finite-size scaling and percolation on high-dimensional tori and theirrelationshiptotheErdo˝s–Rényirandomgraph;(4)extensionsofthesefinite-sizescaling results to hypercube percolation; (5) the existence of the incipient infinite cluster and its scaling properties, as well as the proof of the Alexander–Orbach conjecture for random walksonthehigh-dimensionalincipientinfinitecluster;(6)thenovellaceexpansionforthe two-point function with a fixed number of pivotals; and (7) super-process limits of critical percolationclusters.Thetextisenrichedwithnumerousopenproblems,which,wehope,will stimulatefurtherresearchinthefield. v vi Preface Thistextisorganizedasfollows.InPartI,consistingofChaps.1–3,weintroduceperco- lationandproveitsmainpropertiessuchasthesharpnessofthephasetransition.InPartII, consisting of Chaps. 4–9, we discuss mean-field critical behavior by describing the two main techniques used, namely, differential inequalities and the lace expansion. In Parts I and Part II, all results are proved, making this the first self-contained text discussing high- dimensionalpercolation.InPartIII,consistingofChaps.10–13,wedescriberecentprogress inhigh-dimensionalpercolation.Weprovidepartialproofsandgivesubstantialoverviewand heuristics about how the proofs are obtained. In many of these results, the lace expansion anddifferentialinequalitiesortheirdiscreteanaloguesarecentral.InPartIV,consistingof Chaps.14–16,wediscussrelatedmodelsandfurtheropenproblems.Hereweonlyprovide heuristicsandfewdetailsoftheproofs,thusfocussingontheoverviewandbigpicture. Thistextcouldnothavebeenwrittenwithouthelpfrommany.WearegratefultoKilian Matzke, Andrea Schmidbauer, Gordon Slade, Si Tang, Sebastian Ziesche, as well as the readinggroupsinGenevaandSapporo,forvaluablecommentsandpointingouttyposand omissionsinanearlierversionofthemanuscript.SpecialthanksgotoRobertFitzner,who kindlypreparedthegraphicsinthistext. Thisworkwouldnothavebeenpossiblewithoutthegeneroussupportofvariousinstitu- tions.TheworkofMHissupportedbytheNetherlandsOrganisationforScientificResearch (NWO) through VENI grant 639.031.035. The work of RvdH is supported by the Nether- landsOrganisationforScientificResearch(NWO)throughVICIgrant639.033.806andthe GravitationNetworksgrant024.002.003. ThecontentofthisbookhasbeenpresentedbyRvdHattheCRM–PIMSSummerSchoolin Probability2015inMontréal.HewarmlythankstheorganizersLouigiAddario-Berry,Omer Angel,Louis-PierreArguin,MartinBarlow,EdPerkinsandLeaPopovicforthisopportunity, aswellastheCRMforgeneroussupport. Bothofushavebeenworkingformanyyearsonpercolationandthelaceexpansion,and wethankourcolleaguesforjoyfulandinspiringcollaborationsthatledtomanyjointarticles. Mostnotably,wethankChristianBorgs,JenniferChayes,RobertFitzner,TakashiHara,Frank denHollander,MarkHolmes,TimHulshof,AsafNachmias,AkiraSakai,GordonSladeand JoelSpencer.Thankyouforparticipatinginthewonderfuljourneysinthisbeautifulbranch ofmathematicalresearch! Munich,Germany MarkusHeydenreich Eindhoven,TheNetherlands RemcovanderHofstad March2017 Contents PartI IntroductiontoPercolation 1 IntroductionandMotivation ........................................... 3 1.1 IntroductionoftheModel........................................... 3 1.2 CriticalBehavior .................................................. 7 1.3 Russo,FKG,andBKR ............................................. 12 1.4 AimofThisBookandWhatIsNew?................................. 15 1.5 OrganizationandNotation .......................................... 17 2 FixingIdeas:PercolationonaTreeandBranchingRandomWalk .......... 19 2.1 PercolationonaTree .............................................. 19 2.2 BranchingRandomWalkasthePercolationMean-FieldModel ........... 25 3 UniquenessofthePhaseTransition...................................... 31 3.1 MainResult ...................................................... 31 3.2 TheDuminil-CopinandTassionUniquenessProof...................... 32 3.3 TheAizenman–BarskyUniquenessProof ............................. 36 3.4 TheMagnetization ................................................ 37 3.5 TheLowerBoundontheMagnetization............................... 38 3.6 Aizenman–BarskyProofofMean-FieldLowerBoundon(cid:4).p/ ........... 39 3.7 ProofoftheAizenman–BarskyDifferentialInequalities ................. 40 PartII Mean-FieldBehavior:DifferentialInequalitiesandtheLaceExpansion 4 CriticalExponentsandtheTriangleCondition ........................... 47 4.1 DefinitionoftheTriangleCondition .................................. 47 4.2 TheSusceptibilityCriticalExponent(cid:2) ................................ 48 4.3 Mean-FieldBoundsontheCriticalExponentsıandˇandOverview ...... 54 5 ProofofTriangleCondition:TheInfraredBound......................... 55 5.1 TheInfraredBound................................................ 55 5.2 Spread-OutModels................................................ 59 vii viii Contents 5.3 OverviewofProof:ALace-ExpansionAnalysis........................ 60 5.4 TheRandomWalkTriangle ......................................... 62 6 TheDerivationoftheLaceExpansionviaInclusion–Exclusion ............. 65 6.1 TheInclusion–ExclusionLaceExpansion ............................. 65 6.2 DerivationoftheInclusion–ExclusionLaceExpansion .................. 67 6.3 FullExpansion:HowtoDealwiththeErrorTerm ...................... 74 7 DiagrammaticEstimatesfortheLaceExpansion ......................... 77 7.1 OverviewoftheBounds............................................ 77 7.2 AWarmUp:Boundson˘.0/and˘.1/ ............................... 81 7.3 BoundsontheLaceExpansion:BoundingEvents ...................... 87 7.4 BoundsontheLaceExpansion:DiagrammaticEstimates ................ 90 7.5 BoundsontheLaceExpansion:ReductiontoSimpleDiagrams........... 93 7.6 OutlookontheRemainderoftheArgument............................ 99 8 BootstrapAnalysisoftheLaceExpansion ............................... 101 8.1 OverviewoftheBootstrapArgument ................................. 101 8.2 TheBootstrapFunctions............................................ 104 8.3 ConsequencesoftheBootstrapBound ................................ 109 8.4 TheBootstrapArgumentCompleted.................................. 116 8.5 ConsequencesoftheCompletedBootstrap ............................ 123 9 Proofthatı D2andˇ D1undertheTriangleCondition.................. 125 9.1 ADifferentialInequalityInvolvingtheTriangle ........................ 125 9.2 TheClusterTailCriticalExponentı.................................. 126 9.3 ThePercolation-FunctionCriticalExponentˇ ......................... 128 9.4 ProofoftheDifferentialInequalityInvolvingtheTriangle................ 131 PartIII Mean-FieldBehavior:RecentResults 10 TheNonbacktrackingLaceExpansion................................... 141 10.1 Mean-FieldBehaviorford (cid:3)11..................................... 141 10.2 NonbacktrackingWalk ............................................. 143 10.3 TheNonbacktrackingLaceExpansion(NoBLE) ....................... 147 10.4 TheNoBLEBootstrapArgument .................................... 151 10.5 TheNumericalAnalysis............................................ 152 11 FurtherCriticalExponents............................................. 155 11.1 Correlation-LengthExponents(cid:5) and(cid:5)2andGapExponent(cid:6) ............ 155 11.2 TheTwo-Point-FunctionCriticalExponent(cid:3) .......................... 157 11.3 ArmExponents(cid:7) and(cid:7) .......................................... 160 in ex 11.4 OnthePercolationUpperCriticalDimension .......................... 166 12 Kesten’sIncipientInfiniteCluster....................................... 169 12.1 MotivationfortheIncipientInfiniteCluster............................ 169 12.2 TheIncipientInfiniteClusterinHighDimensions ...................... 170 Contents ix 13 Finite-SizeScalingandRandomGraphs ................................. 175 13.1 Inspiration:TheErdo˝s–RényiRandomGraph.......................... 176 13.2 CriticalHigh-DimensionalTori...................................... 184 13.3 GeneralHigh-DimensionalTori...................................... 186 13.4 HypercubePercolation ............................................. 195 13.5 ScalingLimitsofCriticalRandomGraphs............................. 206 13.6 TheRoleofBoundaryConditions.................................... 213 PartIV RelatedandOpenProblems 14 RandomWalksonPercolationClusters.................................. 221 14.1 RandomWalksontheInfiniteCluster................................. 221 14.2 RandomWalksonFiniteCriticalClusters ............................. 223 14.3 RandomWalkontheIncipientInfiniteCluster ......................... 226 15 RelatedResults ....................................................... 231 15.1 Super-ProcessLimitsofPercolationClusters .......................... 231 15.2 OrientedPercolation ............................................... 240 15.3 ScalingLimitofPercolationBackbones............................... 242 15.4 Long-RangePercolation............................................ 245 15.5 TheAsymptoticExpansionoftheCriticalValue........................ 248 15.6 PercolationonNonamenableGraphs ................................. 251 16 FurtherOpenProblems................................................ 257 16.1 InvasionPercolation ............................................... 257 16.2 RandomWalkPercolationandInterlacements.......................... 264 16.3 Scale-FreePercolation ............................................. 267 16.4 FKPercolation.................................................... 270 Bibliography ............................................................ 275 Symbols EıF disjointoccurrenceofeventsE andF;cf.(1.3.3) x !y verticesxandy areconnected;cf.p.3 x ()y Dfx !ygıfx !yg,verticesxandy aredoublyconnected; cf.Def.6.3(a) C.x/ Dfy Wx !yg,clusterofvertexx;cf.p.3 Ceb.x/ restrictedclusterwithoutusingbondb;cf.Def.6.3(b) (cid:4).p/ DPp.jC.x/jD1/,clusterdensity/percolationfunction; cf.(1.1.1) p Dinffp W(cid:4).p/>0g,percolationcriticalthreshold;cf.(1.1.2) c (cid:8).p/ DEpŒ(cid:2)jC.x/j(cid:9),expectedc(cid:3)lustersize/susceptibility;cf.(1.1.3) (cid:8)f.p/ DEp jC.x/j1fjC.x/j<1g ,truncatedexpectedclustersize; cf.(1.1.5) (cid:10)p.x;y/ DPp.x !y/,two-pointfunction;cf.(1.1.6) (cid:10)pf.x;y/ DPp.x !y;jC.x/j<1/,truncatedtwo-pointfunction; cf.(1.1.7) (cid:11).p/ D(cid:4)qlimn!1n=log(cid:10)pf.ne1/,correlationlength;cf.(1.1.11) P (cid:11)2.p/ D .1=(cid:8)f.p// x2Zdjxj2(cid:10)pf.x/,averageradiusofgyration; cf.(1.1.12) ˇ percolationfunctioncrit.exponent;cf.(1.2.1) (cid:2) susceptibilitycrit.exponent;cf.(1.2.5) (cid:5) correlationlengthcrit.exponent;cf.(1.2.7) (cid:5)2 av.radiusofgyrationcrit.exp;cf.(1.2.8) (cid:6) gapcrit.exponent;cf.(1.2.9) ı clustertailcrit.exponent;cf.(1.2.10) (cid:7) extrinsicone-armcrit.exponent;cf.(1.2.11) ex (cid:7) intrinsicone-armcrit.exponent;cf.(1.2.12) in (cid:3) two-pointfunctioncrit.exponent;cf.(1.2.13) D.x/ D1PfjxjD1g=.2d/,simplerandomwalkstepdistribution;cf.(1.2.18) C(cid:2).x/ D n(cid:2)0(cid:12)nD?n.x/,randomwalkGreen’sfunction;cf.(2.2.8) J.x/ Dp1fjxjD1g D2dpD.x/;cf.(6.2.1) A x !y connectionthroughA;cf.Def.6.2 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.