AUTHOR INDEX Loth, E. 161 Mehring, C. 609 Miller, C. A 31 Molina, A. 507 Nielsen, H. P 283 Ogada, T. | Oppenheim, A. K. Pershing, D. W. 507 Renard, P.H. 225 Richter, H. 565 Rolon, J.C. 225 Saenger, M. 1 Sarofim, A. F. 507 Siagi, Z. | Sirignano, W. A. 609 Srivastava, R. K. 131 Sung, C.J. 459 Thévenin, D. 225 Werther, J. 1 Williams, F. A. 657 AUTHOR INDEX Loth, E. 161 Mehring, C. 609 Miller, C. A 31 Molina, A. 507 Nielsen, H. P 283 Ogada, T. | Oppenheim, A. K. Pershing, D. W. 507 Renard, P.H. 225 Richter, H. 565 Rolon, J.C. 225 Saenger, M. 1 Sarofim, A. F. 507 Siagi, Z. | Sirignano, W. A. 609 Srivastava, R. K. 131 Sung, C.J. 459 Thévenin, D. 225 Werther, J. 1 Williams, F. A. 657 KEYWORD INDEX Agricultural residues Laminar flame 657 Air emissions 131 Liquid streams 609 Air pollution control Air pollution 131 Markstein length 459 Ash deposition 283 Metal combustion 57 Ash problems | Microgravity drop experiments Atomization 609 Modeling 417 Biomass 283 Nitrogen oxide 507 Bubble 161 Nitrous oxide 507 NO, 417 Char 507 Non-premixed 367 Chemical reaction pathways Nonequidiffusion 459 Chlorine 283 Numerical simulations 225 Closed combustion systems Numerical 161 Co-firing | Coal combustion 507 Orimulsion 13 Combined cycles 301 Combustion diagrams 225 Partial premixing 657 Combustion processes 565 Particle 161 Combustion 1, 301, 367, 417 Phase changes 57 Computational fluid dynamic 507 Phase diagrams 57 Corrosion 283»2 Pollutants 417 Polycyclic aromatic hydrocarbons 565 Detonation initiation 29 Power generation 301 Diffusion flame 657 Premixed flame 657 Disintegration 609 Premixed 367 Disruptive combustion 57 Distortion 609 Review 609 Droplet physics 38 Droplet 161 Sheets 609 Droplets 79 Single particle model 507 Dynamic features Spearpoints 57 Spontaneous flames 29 Emissions 1, 367, Spray theory 381 Emulsified fuels 131 Spray 79 Exothermic centers Stretch 459 Experiments 225 Supercritical fluids 329 Extinction 657 Superheaters 283 Extinguishment Suppression 79 Fire 79 Theory 225, 609 Flame dynamics 459 Thermodynamics Flame 225 Thermokinetics Flamelet 657 Thermostatics Fluid behavior at high pressure 329 Turbulence 16 Forces 161 Fullerenes 565 Unified theory Gas dissolution 57 Vortex 225 Gradient mechanism 29 Waste 283 Heat transfer 33 Water 79 Jets 609 UBJECT INDEX Acetylene 568-569, 591-594 Bunsen flames 490-492 Adiabatic auto-ignition wave 44 Burners 304 Aerodynamics 534, 536 Burning drops 354 Agricultural residues 1-27 Burning rate 405 ash composition 11 Burning rings 249 ash content 4 Burning sprays 344-345 ash melting points 14-15 Burning vortex ring 237-238, 244 bulk density 4 | ,3-Butadiene pyrolysis 590 combustion with coal 20—23 combustion process il ‘,-hydrocarbons 578-584 densification 6—7 ‘anonical formalism 389-391 emissions 5, 15—17 ‘apillary phenomena 614 energy potential 2 ‘arbon dioxide 152 melting points 11-15 ‘arbon dioxide sequestration 323-325 moisture content 4 ‘arbon monoxide 134, 145-146, 312, 516-517 mono-combustion systems ‘arbon monoxide diffusion flames 669 Apparent |l eat release ‘arbon monoxide flames 662 Carbon oxidation 519-521 Cerro Negro bitument 137 ssions regulations [54-150 CFBC see Circulating fluidized bed combustors O, control technologies 152 CFD see Computational fluid dynamics Orimulsion combustion 131 Chapmen-Jouguet detonation 33 Alkali chlorides, sulfation 289 Char Aldane drops 340 nitrogen conversion 507-531 nitrogen functionalities 508-509 nitrogen oxidation 509-513 Annular NO production 519-522 Apparent heat release (AHR) 539 oxidation 427 Aromatic ring formation 571—585 surface reactions 513-519, 523-524 Arravs 359-360 Chemical kinetics 534, 536 Ash Chemical reaction pathways, soot 565-608 agricultura Chlorides 285-286 Chlorine-associated corrosion 283-298 Chromium carbide 291 Circulating fluidized bed combustors (CFBC) 305 Cl, corrosion 286-288 Clean coal technologies 322-32: Closed combustion systems 53: heat transfer 534, 536, 543 literature 536-537 269 model 537 parameters 539-540 my forces 190. 19] ration 12-13, 14 ,oundary-element method ames 569-571 | formation 593 Clouds 359-360 nponent drops 353 Clusters 359-360 CMC see Conditional Moment Closure sition 14 Co-combustion, coal-agricultural residues 20-2: 284 Co-firing see co-combustion pollutant emissions Co-ordinates 537 Biomass-fired boilers 2 Coal Bitumen 140 ash melting temperature |1 3oiler efficiency 14 clean technologies 322—325 Boiling heat transfer 99 co-combustion with agricultural residues 20 Boundary | layer 285-387, 388, 612 combustion 507-531 3oundary |I layer flame 406 devolatilization 427 Boundary-element method (BEM) 619 mineral matter transformation 312 Break-up 627-628 moisture 444 Briquetting press unit 5 nitrogen functionalities 5O8—S509 Bubble nitrogen release 422-423, 446 diffusion 211—212 particle size 442-444 drag force 179-18] pulverized combustion 303-304 interacting droplets 410-41 | Coal-fired utility boilers 507-531 two-phase flow motion 161-223 Coal-water slurries 136—137 wall interaction forces 192 Collision forces 192-193 Bulk metal combustion 58 Combined cycles 301-327 Vill SUBJECT INDEX Combustion 406 Dispersed-phase flow 173-176, 193-215 see also Closed combustion; Co-combustion; Comprehensive —_ Disruptive combustion 57—78 combustion models Distortion theory 609-655 additives 14, 15 DNS see Direct numerical simulations bulk metals 58 Drag force diagrams 270-276 bubbles 179-181 disruptive 57-78 compressibility 185 droplets 387, 388 droplets 179-181 flame propagation 36 solid particles 177-179 instabilities 225 turbulence 182-185 non-premixed 369-372, 374-377 Dripping 620 normal gravity 339-34 Drop boundary 350 power generation 301 Droplet combustion 388 premixed 372-374, 377 numerical simulation 387 pulverized coal 303-3 04 Droplet gasification, numerical simulation 387 soot 565-608 Droplet physics 381-416 Combustion synthesis studies 58-60 Droplet regression 403 Compartment fires 84, 116-122 Droplet-droplet interaction model 388-389 Comprehensive combustion models 432-433 Droplet-flame interaction 104 Compressibility 185 Droplet-surface interaction 99 Computational fluid dynamics (CFD) 161, 34, 5: Droplets 80, 86 Conditional Moment Closure (CMC) 375 aerothermochemistry 381-416 Conical sheets 637-650 canonical theory 389-39] Consumption rate calculations 243 drag force 179-181 Continuity of mass 611 evaporation 97 Continuous random walk (CRW) models 200 evolution theory 397-401, 414 Continuous-fluid physics 216 flame location 403-404 Continuous-fluid simulations 170-171 formation 613-617 Convective enhancement 395 interacting 410-412 Copper particle combustion 69-70 mean diameter 86-87 Corannulene 594 optimum size 106-107, 610 Coronene 589 quasi-steady theory 384-385, 388 Corrosion sampling 87-88 agricultural residues 14, 15 sizing techniques 88 chlorine-associated 283-298 spray cooling 94-102 Cl, 286-288 spray pattern 88 coal/agricultural residues co-combustion 22 states 406-410 HCI 286-288 structural theory 384 molten sulfate 294-295 thermal radiation 102-103 NaCl 288 unified theory 389 Counterflow burners 668 Drops Counterflow diffusion flame 667 see also Fluid drops Crib tests 109 experiments 334 Critical point 334 groups 359-360 Crow instability 233 modeling 347-359 CRW see Continuous random walk models DRW see Discontinuous random walk models Cusp formation 465-466, 489-490 Cyclization reactions 571} Eddy Dissipation Concept (EDC) 429 Cyclodehydrogenation 593 Edge flames 374 Cyclone burners, agricultural residues 19 Electron-dispersive spectroscopy (EDS) 65 Electrostatic precipitator (ESP) 154 Damk6hler number 660, 665 Emission rate 334 Decay, closed combustion 534 Emission/evaporation experiments 341 Densification techniques 6-7 Emissions Density stratification 341 see also Pollutant emissions Detonation agricultural residues 5, 15 17 gas dynamical jet 51 air pollution 134-136 photo-initiation 50-51 coal/agricultural residues co-combustion 21-22 Detonation complex 46 emulsified fuels 137 Detonation initiation 29-55 metals 151 ignition modes 48-50 NO 16-17, 134, 419, 508 mathematical description 43-46 NO, 16-17, 134, 145, 146-148, 308, 665, 671 non-explosive 50-52 NO, formation 417-458 numerical modeling 35 Orimulsion 143-152 Devolatilization,, agricultural residues 8-9 imitting drops 348-358 Diffusion flames 667-672 mulsified fuels 131-160 Dilute continuum particle flow 165-166 combustion characteristics 136-137 Dilutedness index 412 fuel handling 137-138, 139 Direct numerical simulations (DNS) 173, 430, 618-619 secondary atomization 138 Direct-fired gas turbines, agricultural residues 19 Energy balance 541 Discontinuous random walk (DRW) models 200 Envelope flame 406 Disintegration 611 Equation of state (EOS) 33 Disintegration experiments 341-344 Equidiffusive flames 474-476 SUBJECT INDEX SP see Electrostatic precipitatot co-combustion 21 thylene 599 Fluidized bed combustors (FBC) 305 ulerian modeling agglomeration 12-13, 15 dispersed-phase 204—212 Fluids fluid-particle physics 216 behavior at high pressure 329-366 ulerian particle representation 173, 174 supercritical 329-366 vaporation constant 334 Fly ash 304 xothermic centers 46-50 Fouling xperimental vortices 230-23: agricultural residues 13-14, 15 xplosive phenomena 30 coal/agricultural residues co-combustion 22 xplosive processes 3 3-34 Freon-13 336 amplification 42-43 Fuel, agricultural residues 3—5 exothermic centers 47-50 Fuel blanketing 86 xterior flow gasification rate 386 Fuel handling procedures 139 xtinction Fuel nitrogen release 433-434 diffusion flames 672 Fuel NO 424-426 Law’s criteria 408 Fullerenes 594-596 numerical simulation 257 vortex dynamics 259-260 Gas bubbles, two-phase flow motion 161-223 Extinguishment 79-130 Gas diffusion 287 see also Fire suppression ‘ Gas dissolution 57-78 Gas dynamical jet 51 ast chemistry theory 369 Gas turbine-steam combined cycles 314-319 avre averaging 209 Gas turbines 311, 331, 437 FBC see Fluidized bed combustors Gaseous atomisers 89 FDF see Filtered density function Gaseous combustion, spray cooling 94-98 eCl, 291] Gasification 392, 403, 405 GD see Flue gas desulfurization General fluid dynamic environment (GFE) 389 Film boiling 99 GFE see General fluid dynamic environment ilm rupture 633-635 Gradient mechanism 29-55 iltered density function (FDF) 376 Grate-fires systems, agricultural residues 17-18 > reaction rate 388 Gravity effects 260, 269 unconfined 84-85 spread 83-84 HAEA see High activation energy asymptotic analyses ire suppression 79-130 HAPs see Hazardous air pollutants compartment fires 84, 116-122 Hazardous air pollutants (HAPs) 134, 151-152 experimental data 108-124 HCl, corrosion 286-288 spray nozzles 89 HCN 521 ater 85-86 Head-on flame/vortex interaction 240, 245 water application methods 92-94 Heat capacity 33 Water Mist Fire Suppression Systems 122-125 Heat exchange, canonical laws 402-403 vater mist systems 90-92 Heat release 539 water sprays 86-89 Heat release rate (HRR) 84, 114 ire types 82-83 Heat transfer 534, 536, 543-558 \ 83-86 Heptane 336 lame dynamics 403, 459-505 Heterogeneous NO, reactions 435 Flame propagation 36, 266 High activation energy asymptotic (HAEA) analyses 372 High-speed explosion processes 31 Hill’s vortex models 385-387, 388 ructure 369-374, 461 Homogeneous NO, reactions 434-435 al simulations 251-2 Hosereel systems 92-93 € eractions 2 ) HRR see Heat release rate ning vortex ring 237-238, 244, 24 Hydraulic nozzles 92 configurations 237—24 Hydrocarbon polymerisation theory 568 formulations 240-244 Hydrodynamic stretch 464-469, 488-492 head-on flame/vortex interaction 240, 245 Hydrogen jet flames, thermal diffusion 258 jet flames 236, 2 , 248 Hydrogen-air diffusion flames 669 Karman vortex streets 2 237, 24: Hydrogen-air flames 661 action front/vortex interactions 247-248 Flamefront cellular instabilities 492-498 IGCC see Integrated gasification combined cycle Flamelets 657-682 Ignition Flammable liquids 83 closed combustion 534 Flashover 84 dynamic criteria 409-410 Flow oscillation 498-501 Law’s criteria 408 Flue gas desulfurization (FGD) systems 134, 154 multi-source 50 Fluid drops 335-341 numerical simulation 256-257, 263 Fluid momentum 61 1 vortex dynamics 259-260 Fluid particles 179 Ignition delay 34 see also Bubbles; Droplets Indirectly fired gas turbine combined cycles 315 Fluid shear layers 341-345 Induction flame 44, 45 Fluid-particle physics 216 Infinite reaction rate 388 Fluidized bed combusters (FBC) Initiating center 32 agricultural residues 18-19 Injectors 610 SUBJECT INDEX Integrated gasification combined cycle (IGCC) 321- Micro-electro-mechanical devices (MEMs) 179 Interacting drops 338 Microgravity combustion 337-339 Interfacial exchange 394 Microgravity drop experiments 329-366 Interior heating model 386-387 Microgravity emission/observation 335 Internal combustion engines 536, 558-560 MILES see Monotonically integrated large-eddy simulations Interphase transfer 176-193 Mixed-fluid Eulerian description 174, 206 Iron combustion 60-63 Mixing layers 341, 361 Modeling Jet flames 236, 237, 245, 248-249 explosive processes 34-41 numerical simulations 251-258 fluid-particle physics 216 Jet instability 88 mean turbulent diffusion 199-204 Jet pinching 620-622 non-turbulent flow 199 Jet/spray branches 92 sprays 362-363 Jet/spray experiments 334, 343 streams 360-361 Jets subcritical fluids 345-363 see also Round jets supercritical fluids 345-363 modeling 361-362 Moisture content, agricultural residues 4 Moment closure method 430-432 Karman vortex streets 234, 237, 244 Momentum coupling 170 KCI 291 Momentum transfer 176-177 Kelvin-Helmholtz instability 260 Mono-combustion systems, agricultural residues 17-20 Monotonically integrated large-eddy simulations (MILES) 255 Lagrangian modeling, dispersed-phase 193-204 Monte-Carlo (MC) simulations 374, 432 Lagrangian particle representation 173, 174 Multi-source ignition 50 Laminar fiame see Flamelets Multicomponent fuels 136-139 Langevin stochastic differential equation models 200 Multiphase flows 173-176, 193-215 Large eddy simulations (LES) 173, 361, 377 Lead 134 N,0 emissions 134, 419, 508 LEM see Linear eddy model agricultural residues 16-17 LES see Large eddy simulations NO partial pressure 518 Lewis number 260, 269, 355-356, 388 NaCl, corrosion 288 LHF see Locally Homogeneous Flow Naphthalene 585 LHV see Lower heating value Natural convection boiling 99 Lift force 185-189 Navier-Stokes equations 244, 618 Linear eddy model (LEM) 429 Nickel 134 Liquid nitrogen disintegration 343 Nitrogen release 422-423 Liquid particles, two-phase flow motion 161-223 NO, partial pressure 517-518 Liquid propellant rocket engines 30 NO formation 421, 521 Liquid sheets 622-637 NO reburning 310, 426-427 Liquid streams 609-655 NO reduction 514-515, 522 Liquids, reaction front/vortex interactions 247-2 Non-explosive detonation initiation 50-52 LNBs see Low NO, burners Non-premixed combustion 369-372, 374-377 Locally Homogeneous Flow (LHF) 174, 206 Non-reacting vortex flows 229-236 Low NO, burners (LNBs) 134, 152, 308, 310 Nonequidiffusive flames 476-484 Lower heating value (LHV) 539 Normal gravity combustion 339-341 LO, 336, 354 Normal gravity emission/observation 335-337 NO, MACT see Maximum available control technology control technologies 152-154, 420-421 Magnesium 134 formation 417-458 Magnesium injection 154-155 submodels 432-439 Magnesium particle combustion 73-75 NO, emissions 134, 308, 665, 671 Markstein number 666 agricultural residues 16-17 MASB see Metallic multiannular combustor Orimulsion 145, 146-148 Mass balance 541 Nozzles 89 Maximum available control technology (MACT) 134 single-fluid 91-92 MC see Monte-Carlo simulations twin-fluid 92 Mean diffusion 168-169, 199-204, 208-212 Nucleate boiling 99 MEMs see Micro-electro-mechanical devices Numerical modeling, explosive processes 34-41 Metal combustion 57-78 aluminium 70-73 One-third averaging rule 388 combustion synthesis studies 58-60 Orimulsion 131-160 copper 69-70 air pollution control technologies 152-155 iron 60-63 combustion 140-143 magnesium 73-75 composition 140 transition metals 65-68 emissions 143-152 zirconium 63-64, 65-68 production 133-134 Metal oxides 285-286 transport 156 Metal-gas combustion systems 58-60 waste handling 156 Metallic multiannular combustor (MASB) 319 Oxygen 516 Metals emissions 151 Oxygen dissolution 60-63 Methane 599 Ozone 134 Methane diffusion flames 669-670 Methane-air flames 662-663 PAH see Polycyclic aromatic hydrocarbons SUBJECT INDEX Parameters 539-540 Quenching 268 Parameters of state 534, 536 Partially premixed diffusion flamelets 672-674 Radially stratified flame core burner (RSFC) 310 Particle-image velocimetry (PIV) 24: RANS see Reynolds Averaged Navier-Stokes simulations Particle Reaction front/vortex interactions 247-248 19] Reaction rate 388 collision forces 192 3 Reburning 152-154, 309, 426-427 diffusion 211-212 Regional gasification partitions 398 flow 165 Regression 393, 405 kinetic equilibrium 166-167 Resolved-eddy simulations 171, 172-173, 212-215 lift force 185-189 Resolved-volume Lagrangian particle representation 174-176 motion 166-170 Resolved-volume Lagrangian simulations 194-197 reflection 204 fluid-particle physics 216 size distribution 150-151 Reynolds Averaged Navier-Stokes (RANS) simulations 171 stress gradient effect 190 Rifling nozzles 89 virtual mass effects 189-190 Rim disintegration 650 wall interaction forces 191—193 Rotary burners, agricultural residues 19 ticulate matter (PM) 134, 149-151 Round jets 613-622 see Pulverized coal combustion RSFC see Radially stratified flame core burner Probability Density Function method Pelletization 6 Saturation 406 PFBC see Pressurized fluidized bed combustion Sauter Mean Diameter (SMD) 86 Phase diagrams 57-78 SCR see Selective catalytic reduction Phase space 534 SDE see Stochastic differential equation models Phenylacetylene 585 Secondary atomization 138 Physical-chemical gas dynamics 32, 41~ Selective catalytic reduction (SCR) 154, 420 Pile burners, agricultural residues 17-1 Selective non-catalytic reduction (SNCR) 420 PIV see Particle-image velocimetry Self-propagating high temperature synthesis (SHS) 58 Planar sheets 622-637 Separated-fluid Eulerian description 174, 207-212 PM see Particulate matter SHAR see Spray Heat Absorption Ratio t ic noz 2 Shear layers 237, 361 tion 261-263 Sheet disintegration 622 roper orthogonal decomposition models Sheet modulation 627 lume Lagrangian particle representation 174-176 Sheet thinning 627 volume Lagrangian modeling Shock wave front 45 fluid-particle physics 216 SHS see Self-propagating high temperature synthesis mean turbulent diffusion 199-204 Simple Line Interface Calculation (SLIC) 262 non-turbulent flow 199 Simulated vortices 235-236 Point-volume parcel representations 197-199 Simultaneous particle and molecular modeling (SPAMM) 591 emissions Single metal particle combustion studies 64-75 ilso Air Pollution Single vortex ring/V-shaped flame interaction 246-247 ultural residues 15-1 Single vortex structure 237 omass combustion 15 Slagging, agricultural residues 13-14, 15 mtrols 134-136, 306-312 Slagging combustion 304-305 diffusion flames 669-670 SLFM see Stationary Laminar Flamelet Model NO, formation 417-458 SLIC see Simple Line Interface Calculation premixed flamelets 664-665 SMD see Sauter Mean Diameter olyaromatic hydrocarbon stack emissions 151 SNCR see Selective non-catalytic reduction clic aromatic hydrocarbons (PAH) 134, 565-608, 664 SO, control technologies 154—155 soot formation 566-568, 585-591 SO, emissions 147, 148-149 Polydispersivity 204, 360 Solid fuels 83 Power generation 301-327 spray cooling 98-102 Preheating 406 Solid particles Premixed combustion 372-374, 377 collision forces 192-193 Premixed flames 459-505, 659-667 drag force 177-179 Pressure atomisers 89 two-phase flow motion 161-223 Pressurized fluidized bed combustion (PFBC) 315-316 wall interaction forces 192 Probability Density Function (PDF) method 429 Solid waste handling, Orimulsion 156 Process shape factors 398-399 Soot 565-608, 664 Prompt NO 424 acetylene 568-569, 591-594 Proper orthogonal decomposition (POD) models 172 aromatic ring formation 571-585 Pulsating instability 501-503 benzene flames 569-571 Pulverized coal combustion (PCC) 303-304 fullerenes 594-596 Pulverized coal fired supercritical steam boilers 313 ionic mechanism 596 Pulverized combustion system, co-combustion 21 thermodynamics 597-599 Spalding-Godsave potential 394 QRRK see Quyantum Rice-Ramsperger-Kassel approach SPAMM see Simultaneous particle and molecular modeling QSDC see Quasi-Steady Detonation Complex Spearpoints 63 Quantum Rice-Ramsperger-Kassel approach (QRRK) Species exchange, canonical laws 402-403 599-600 Spontaneous flames 29-55 Quasi-steadiness 500 current theory 32 Quasi-Steady Detonation Complex (QSDC) 43 exothermic centers 46-50 Quasi-steady theory of droplets 384-385 SWACER-mechanism 41-42 SUBJECT INDEX Spontaneous ignition, reactive flow 3441 Transition metals 152 Spray combustion 381-416 Transport, Orimulsion 156 Spray Heat Absorption Ration (SHAR) 122 Travelling grate stoker 302 Sprays 609 Turbophoresis 169 see also Water sprays Turbulence 161-223, 535 modeling 362-363 chemical kinetics computations 428-432 Spreader-stokers, agricultural residues 17-18 drag force 182-185 Sprinkler technology 114-115 Turbulent combustion 225, 270-276, 367-380 SR see Stoichiometric ratio Turbulent diffusion 205 Staging 420 Turbulent dispersion 168 State space see Phase space Two-phase flow State transition 407-408 computational approaches 161-223 Stationary Laminar Flamelet Model (SLFM) 371, 375 technique selection 215-219 Stochastic differential equation (SDE) models 200 Two-way coupling 170 Stoichiometric ratio (SR) 441-442 Stokes drag 177-178 Unburnt pollutants 15-16 Straw, ash melting temperature 11 United States Clean Air Act 134 Stream pinch-off 620-622 Unresolved-eddy simulations 171-172 Streams, modeling 360-361 Utility boilers 446-451, 507-531 Stress gradient effect 190 Stretch rate 467-469 V-shaped flame interaction 237, 244 Structural dispersion 168, 169-170 Vaporization 406 Styrene 585 VD see Vortex dynamical models Subcritical fluids, modeling 345-363 Very large eddy simulations (VLES) 173 Sulfate corrosion 294—295 Vinyl radicals 599 Sulfation, alkali chlorides 289-290 Virtual mass effects 189-190 Sulfur 308 VLES see Very large eddy simulations Sulphur dioxide 134, 148 Volatile matter, agricultural residues 5 control technologies 154-155 Volatiles, agricultural residues 8-11 Supercritical fluids 329-366 Volume balance 541 microgravity combustion 337-339 Volume mean diameter 87 microgravity emission/evaporation 3 Vortex bubble 232 modeling 345-363 Vortex characteristics 266-267 normal gravity combustion 339-341 Vortex dipoles 230, 233-234, 268-269 normal gravity emission/evaporation ‘ Vortex dynamical (VD) models 172 shear layers 341-345 Vortex dynamics 258-260, 629 Superheaters 283-298 Vortex generation 233, 260 Surface modulation 394 Vortex ring/counterflow flame interaction 249 Suspension burners, agricultural residues 19 Vortex ring/counterflow twin-flame interaction 247 SWACER-mechanism 41-42 Vortex rings 230 Swirl number 439-441, 645 Vortex structures 227, 229-230 Vortex/flame interactions 225-282 Temperature, explosive processes Thermal communications 83 Wake flame 406 Thermal diffusion Wall interaction forces 191—193 emitting drops 352 Wastewater, Orimulsion 156 hydrogen jet flames 258 Water, high pressure 336 Thermal expansion 253-254, 260, 269 Water disiniegration 341 Thermal NO 423-424 Water Mist Fire Suppression Systems (WMEFSS) 122- Thermal radiation, water droplets 102 Water mist systems 90-92, 114 Thermodiffusive approximations 240 Water sprays 86-88 Thermodynamic efficiency 312-322 computer simulation 105 Thermodynamics 534, 536, 560-562 diffuse jets 88-89 soot 597-599 penetration 103-106 539 solid jets 88 5 4 Water-in-oil emulsions 137 Thin sheets 630-63: Wavelength-dispersive spectroscopy (WDS) 65 Titanium particle combustion 65-68 Wet electrostatic precipitators 154 Titanium nitrogen combustion systems 58, 59-60 Wet limestone forced oxidation (WLFO) systems 154 TOE see Ton oil equivalent WMESS see Water Mist Fire Suppression Systems Ton oil equivalent (TOE) 2 Wrinkled flame 463-464 Topping combustor 319-321 Trajectories 537-538 Zel'dovich mechanism 423 Transition boiling 99 Zel’ dovich’s spontaneous regimes classification Transition metal particle combustion 65-68 Zirconium particle combustion 63-64, 65-68