ebook img

Profile Changes in the Soil Microbial Community When Desert Becomes Oasis PDF

15 Pages·2015·2.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Profile Changes in the Soil Microbial Community When Desert Becomes Oasis

RESEARCHARTICLE Profile Changes in the Soil Microbial Community When Desert Becomes Oasis Chen-huaLi1,Li-songTang1,Zhong-junJia2,YanLi1* 1 StateKeyLaboratoryofDesertandOasisEcology,XinjiangInstituteofEcologyandGeography,Chinese AcademyofSciences,Urumqi,Xinjiang,China,2 StateKeyLaboratoryofSoilandSustainableAgriculture, NanjingInstituteofSoilScience,ChineseAcademyofSciences,Nanjing,China *[email protected] Abstract Theconversionofvirgindesertintooasisfarmlandcreatestwocontrastingtypesofland- cover.Duringoasisformationwithirrigationandfertilizerapplication,however,thechanges inthesoilmicrobialpopulation,whichplaycriticalrolesintheecosystem,remainpoorly OPENACCESS understood.Weappliedhigh-throughputpyrosequencingtoinvestigatebacterialand archaealcommunitiesthroughouttheprofile(0–3m)inanexperimentalfield,whereirriga- Citation:LiC-h,TangL-s,JiaZ-j,LiY(2015)Profile ChangesintheSoilMicrobialCommunityWhen tionandfertilizationbeganin1990andcroppedwithwinterwheatsincethen.Toassessthe DesertBecomesOasis.PLoSONE10(10): effectsofcultivation,thefollowingtreatmentswerecomparedwiththevirgindesert:CK(no e0139626.doi:10.1371/journal.pone.0139626 fertilizer),PK,NK,NP,NPK,NPKR,andNPKM(R:strawresidue;M:manurefertilizer).Irri- Editor:ZhiliHe,UniversityofOklahoma,UNITED gationhadagreaterimpactontheoverallmicrobialcommunitythanfertilizerapplication. STATES Thegreatestimpactoccurredintopsoil(0–0.2m),e.g.,Cyanobacteria(25%totalabun- Received:June8,2015 dance)weremostabundantindesertsoil,whileActinobacteria(26%)weremostabundant Accepted:September14,2015 inoasissoil.Theproportionsofextremophilicandphotosyntheticgroups(e.g.,Deinococ- cus-ThermusandCyanobacteria)decreased,whiletheproportionsofR-strategy(e.g., Published:October1,2015 GammaproteobacteriaincludingXanthomonadales),nitrifying(e.g.,Nitrospirae),and Copyright:©2015Lietal.Thisisanopenaccess anaerobicbacteria(e.g.,Anaerolineae)increasedthroughouttheoasisprofile.Archaea articledistributedunderthetermsoftheCreative CommonsAttributionLicense,whichpermits occurredonlyinoasissoil.Theimpactoffertilizerapplicationwasmainlyreflectedinthe unrestricteduse,distribution,andreproductioninany non-dominantcommunitiesorfinertaxonomicdivisions.Oasisformationledtoadramatic medium,providedtheoriginalauthorandsourceare shiftinmicrobialcommunityandenhancedsoilenzymeactivities.Therapidlyincreasedsoil credited. moistureanddecreasedsaltcausedbyirrigationwereresponsibleforthisshift.Further- DataAvailabilityStatement:Allrelevantdataare more,differenceinfertilizationandcropgrowthalteredtheorganiccarboncontentsinthe withinthepaperanditsSupportingInformationfiles. soil,whichresultedindifferencesofmicrobialcommunitieswithinoasis. Funding:Theworkwassupportedbythefollowing: 1)NationalNaturalScienceFoundationofChina (grantno:41301102toCL);2)StrategicPriority ResearchProgramoftheChineseAcademyof Introduction Sciences(grantno:XDA05050405toLT);3)The InternationalScience&TechnologyCooperation Soilmicrobesplayfundamentalrolesinsoilbiogeochemicalprocesses.Landuseandmanage- ProgramofChina(grantno:2010DFA92720toYL); menthavesignificanteffectsonthemicrobialcommunitystructureandfunction,andthismay and4)TheKnowledgeInnovationProjectofthe subsequentlyinfluencesoilqualityandecologicalstability[1].Agriculturaluseofnaturalsoils ChineseAcademyofSciences(grantno:KZCX2- isconsideredtohaveproducednegativeeffects[2].Forexample,cultivationonforestor YW-T09toYL).Thefundershadnoroleinstudy meadowsoilscanchangethemicrobialcommunitystructureandrapidlydecreasesoilorganic design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. carbon(SOC)[3–5],andtheoveruseofnitrogen(N)fertilizercanresultinadecreasing PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 1/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis CompetingInterests:Theauthorshavedeclared microbialdiversityandlossofSOC[6–8].However,therearealsomanagementpracticesthat thatnocompetinginterestsexist. areconsideredtohavepositiveeffectsonmicrobialdiversity,activityandSOCsequestration, e.g.,thecombinedapplicationofchemicalandorganicfertilizer[9–10]. Aridlandsaccountfornearly30%ofglobalterrestrialecosystems.Thereisanincreasing needforlarge-scalecultivationindesertregionstofeedhumanpopulations.Whenvirgindes- ertiscultivatedintooasisfarmland,twocontrastinglandscapeorland-covertypesareformed withinthearidland.Duetodroughtandlownutrientlevels,irrigationandfertilizationarenec- essarytoensurecropyieldsandoasisformation.Thelargequantityofwaterandfertilizer applicationsandthedramaticallyincreasedprimaryproductivityinevitablyleadstoremark- ablechangesinthesoil.Furthermore,theimpactisnotlimitedtothetopsoilwherethewater andfertilizerisdirectlyapplied,butthedeepsoilwhichisimpactedbyleachedsubstancesand alteredrootsystems[11].Thesechangescanaltertheabundanceandcompositionofthe microbialcommunityanditsfunction,andinturnsignificantlyinfluencethedynamicsofeco- logicalprocessesinthetopsoilanddeepsoil[12–13].Previousstudieshavesuggestedthatcul- tivationindesertsmayleadtothedisappearanceofsomeextremophilicbacterialgroups,but wouldpromotebacterialdiversityandplanthealth[14].However,becauseoftheverylowlev- elsofcultivablemicroorganismsandthemethodologicallimitationsinmicrobialecology,our knowledgeofdesertsoilmicro-organismsremainsfragmentary.Furthermore,morecompre- hensivestudiesofawiderrangeofsoilsandmanagementpracticesareneededtofullyunder- standtheshiftinmicrobialcommunitiesduringoasisformation. Themethodscurrentlyusedtostudysoilmicrobialcommunitiesaremainlybasedonfin- gerprinttechnology[15]andsoilbiochemicaltechniques[16].However,thesemethodsdonot providesufficientinformationtocomprehensivelyresolvethephylogeneticandtoxicological responsesofmicrobialcommunitiestochangesinenvironmentalconditions.Thehigh- throughputpyrosequencingtechniqueisbasedonhighresolutionsequencinganalysis.Itcan obtainlargeamountsofinformationandprovidemoremeaningfulcomparisonsofmicrobial communitiesthatmaybeaffectedbydifferentmanagementpractices[17–18]. ThisstudywasconductedatthesouthernperipheryoftheGurbantonggutDesert,whichis characterizedbydryness,highsoilsalinity,lownutrientlevels,andintenseradiation[19].Asa typicalaridregion,irrigatedfarmlandistheprevailingland-usetypeinagriculture.Ourpre- cedingresearchshowedthatcultivationinthedesertsignificantlychangedsoilpropertiesand increasedmicrobialbiomass[20].Inthecurrentstudy,wecomparedtheoasissoilsreceiving differentfertilizerapplicationswiththevirgindeserttostudytheeffectsofcultivationonsoil microbialcommunities,usinghigh-throughputpyrosequencing.Theobjectiveofthestudywas toassessthechangesinmicrobialcommunitiesthroughoutthesoilprofileduringoasisforma- tion,andtoevaluateanypossiblelinkagesbetweenthesecommunitiesandsoilproperties, includingenzymeactivity.Wehypothesizedthat:(1)cultivationindesertregionshouldresult inaremarkableshiftinthestructureofthemicrobialcommunity,notonlyinthetopsoilbut alsointhedeepsoil.(2)Increasedsoilmoistureanddecreasedsaltcontentcausedbyirrigation hadthemostsignificantinfluencesonmicrobialcommunitybecausethecorrespondingcondi- tionsaresubstantiallyimprovedwhenanoasisiscreated. MaterialsandMethods Studydescriptionandexperimentaldesign TheexperimentswereconductedattheFukangStationofDesertEcology,ChineseAcademy 0 0 ofSciences,whichislocatedinthehinterlandoftheEurasiacontinent(44°17N,87°56E).The detaileddescriptionsofthestudysitecanbefoundin[11,20,21].Thisregioniscoveredby sparsehalophytevegetation,whichisdominatedbyTamarixramosissima,Reaumuriasoongor, PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 2/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Table1. Fertilizerapplicationratesunderdifferentfertilizertreatmentsinawinterwheatsystem. Treatment Inorganicfertilizer(kgha-1yr-1) Organicfertilizer Nitrogen(N) Phosphorus(P) Potassium(K) (tha-1yr-1) CK 0 0 0 0 PK 0 33 50 0 NK 150 0 50 0 NP 150 33 0 0 NPK 150 33 50 0 NPKR 150 33 50 2.5(Straw) NPKM 150 33 50 2.5(Manure) doi:10.1371/journal.pone.0139626.t001 Nitrariasibirica,andSalsolacollina.Duetothelimitedavailabilityofwater,cultivationisonly conductedinlimitedareas,thusoasisfarmsaregenerallysurroundedbynativedesert. Along-termexperimentonsoilfertilitystartedin1990.Thecropwaswinterwheat,planted inSeptembereachyear,andharvestedattheendofJuneorJulyofthenextyear.Thedetailed descriptionfortheexperimentaldesigncanbefoundinWangetal.[21].Thetreatments selectedinthisstudywere:(1)CK(nofertilizer),(2)PK,(3)NK,(4)NP,(5)NPK,(6)NPKR, and(7)NPKM(R:strawresidueandM:manurefertilizer).Eachtreatmenthadthreereplicates withaplotsizeof33m2.ThemeangrainyieldsfortheCK,PK,NK,NP,NPK,NPKR,and NPKMtreatmentswere0.86,1.06,2.71,3.07,3.71,3.75,4.07tha-1yr-1.Therateoffertilizer applicationineachtreatmentislistedinTable1.Thefertilizerapplicationandfloodirrigation weredescribedindetailpreviously[11]. Soilsampling,soilproperties,microbialbiomass,andenzymeactivity AfterthewinterwheatharvestinearlyJuly2011,soilsampleswerecollectedbothintheoasis receivingdifferentfertilizerapplicationsandtheadjacentdesert.Intheseventreatmentsofthe oasis,fivesamplepointswererandomlycollectedineachofthetreatmentplots.Soilsamples weretakenverticallyusinganaugeratthefollowingdepthintervals:0–0.2,0.2–0.4,0.4–0.6, 0.6–1,1–1.5,1.5–2,2–2.5,and2.5–3m.Theundisturbeddesertsites(withoutirrigationand fertilizerapplication),fromwhichtheoasissoilswerederived,weresampledusingapreviously describedmethod[20].Briefly,threesamplingpointswereplacedrespectivelyinbaresoil, undershrubsandundergrasscoverinthenativedesert,witheachoneamixedsampleoffive locations.Theweightedaveragesofrelevantsoilparametersweredeterminedaccordingtothe areaweightingofthesoilunderplantcanopiesandinbareland. TheSOCandtotalNcontentweremeasuredusingaTotalOrganicCarbon/TotalNitrogen analyzer(MultiC/N3100,AnalytikJena,Jena,Germany),andtotalPwasdeterminedbyacid melt–molybdenum,antimony,andscandiumcolorimetry.Theelectricalconductivity(EC) andpHweremeasuredusingtheconductivitymethodandpotentiometry,respectively(ata soiltowaterratioof1:5).Soilwatercontentwasdeterminedbyagravimetricmethod.Micro- bialbiomasscarbon(MBC)wasdeterminedbythefumigation-extractionmethodcombined withtheTotalOrganicCarbon/TotalNitrogenanalyzer.Theactivitiesoffivesoilenzymesfor severalmetaboliccycles(C,N,P)weredeterminedusingamethoddescribedbyGuan[22]. Invertaseactivity(EC3.2.1.26)wasdeterminedby3,5-dinitrosalicylicacidcolorimetry;urease activity(EC3.5.1.5)wasdeterminedbyindophenolcolorimetry;proteaseactivity(EC:3.4.4.1) wasdeterminedbyninhydrincolorimetry;alkalinephosphataseactivity(EC3.1.3.1.)was determinedbyphenylphosphatesodiumtwocolorimetry;andcatalaseactivity(EC1.11.1.6) wasdeterminedbypermanganatetitration.PhosphatebufferswithpHvaluesof5.5,6.7,7.4, PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 3/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis 10,7.8wereusedtocontrolpHduringthemeasurementsofinvertase,urease,protease,alkaline phosphatase,catalaseactivities,respectively. SoilDNAextractionandpyrosequencing SoilDNAwasextractedfromapproximately0.5gofsoil(ovendrybasisoffield-moistsoil) usingaFastDNAspinkitforsoil(MPBiomedicals,Cleveland,OH,USA)accordingtothe manufacturer’sinstructions.Thequality,quantity,andintegrityoftheDNAextractswere checkedasdescribedby[11].DNAwasPCR-amplifiedintriplicateusingthe515Fand907R primers,whichweredesignedtoamplifythehypervariableV3–V4regionofthe16SrRNA genefrombacteriaandarchaea.Primersweretaggedwithuniquebarcodesforeachsample. ThePCRreactions(Qiagen,Valencia,CA,USA)wereconductedasdescribedby[11].All sampleswereamplifiedintriplicate.TheAandBadaptersrequiredfor454pyrosequencing wereaddedtospecificendsofthePCRproductsaccordingto[23].Technicaltriplicateampli- conswerepooledandpurifiedviathegelpurificationmethodandquantifiedusingPico- 1 Green dye(Invitrogen,Shanghai,China)aftertheywerecheckedby1.2%agarosegel electrophoresis.TheconcentrationofpurifiedPCRampliconswasdetermined,andthey werethencombinedinequimolarratiosintoasingletubeinpreparationforpyrosequencing analysis.PyrosequencingwasperformedonaRoche454GSFLXTitaniumsequencer(Roche DiagnosticsCorporation,Branford,CT,USA)accordingto[23–24].Inthisstudy,pyrose- quencingproducedapproximately250,000high-qualitysequenceswithanaverageread lengthofabout387bp. The16SrRNAgenesequencereadswereprocessedusingribosomaldatabaseproject(RDP) pyrosequencingpipeline(http://pyro.cme.msu.edu/)accordingto[25–27].Briefly,thereadings werealignedbysecondary-structureawareinfernalalignerandthenclusteredintoOperational TaxonomicUnits(OTU)byacustomcodethatimplementsthecomplete-linkageclustering algorithm.ThetaxonomicidentityofeachphylotypewasdeterminedbytheRDPClassifier withan80%bootstrapscore.ThediversityindicesShannon(H)andChao1wereestimated usingMOTHUR[28]usingthegreengenes(http://greengenes.lbl.gov/)asthetargetdatabase. Dataanalysisandstatistics Asthetopsoilenvironmentwasverydistinctandthecompactionaftercultivationoccurredat 0–0.6maccordingtheprofilechangeofthesoilbulkdensityinthestudyarea[20],thetotal profilewasdividedintothetopsoil(0–0.2m)andbelowtopsoil(0.2–0.6mand0.6–3m,or 0.2–3m),inordertomakecomparisonseasier.Theweightedmeansoftherelevantparameters belowtopsoilwereobtainedbyassigningcorrespondingweighttoeachdepth.Statisticalanaly- sesofdatawereconductedusingSPSS11.5forWindows(IBM,Endicott,NY,USA).Analysis ofvariance(ANOVA)andleastsignificantdifference(LSD)testswereusedtoassessthesignif- icanceoftheeffectsofirrigation,fertilizerapplication,andsoildepthonmicrobialcommunity andsoilproperties.ThesignificancelevelwasP<0.05. Canonicalcorrespondenceanalysis(CCA)canreflectqualitativechangesinspeciescompo- sitionandmaximizetheseparationofspeciesoptimaalongsyntheticaxes[29–30].Theanaly- siswasexecutedinCANOCO4.5todeterminetherelationshipbetweenmicrobialtaxaand soilproperties,andtoassesstheeffectsofirrigationandfertilizerapplicationonthecomposi- tionandstructureofthemicrobialcommunity.Themostinfluentialfactoronthemicrobial communitywasselectedfromtheenvironmentalvariablesusingtheforwardselectionin CANOCOforWindowsandaPvalueassociatedwiththeeffectoftheenvironmentalvariables wasgivenbyMonteCarlotest. PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 4/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Results Soilproperties,MBCandenzymeactivity Fertilizerapplicationsnotonlyincreasedcropyield,butalsoincreasedSOCandTNcontents intopsoil(0–0.2m),comparedtodesertsoilorplotswithnofertilizertreatment(S1Table). AlltreatmentsintheoasissoilalsoincreasedthesoilMBCandenzymeactivity,including invertase,prolease,catalase,urease,andphosphatasecomparedtodesertsoil(S2Table).The combinedapplicationofchemicalandorganicfertilizerproducedthelargestchangesinsoil biochemicalproperties.Inaddition,theSOCcontentdecreasedbelowthetopsoilintheplots receivingfertilizertreatments,exceptforthetreatmentscombinedwithorganicfertilizer,and theTNcontentincreasedslightlyinthedeepsoilforalltreatmentsintheoasis(S1Table). SoilECandpHvaluessignificantlydecreasedandthesoilwatercontentsignificantly increasedthroughoutthesoilprofile(0–3m)intheoasissoil(S1Table).Therewerenosig- nificantdifferencesintheEC,watercontentandpHvalueamongthetreatmentswithinthe oasis. Effectsofirrigationontheabundanceofmicrobialtaxon Irrigationhadasignificantimpactonthesoilmicrobialcommunityintopsoil(0–0.2m).In thedeserttopsoil,themostabundantphylawereCyanobacteria(25%)andProteobacteria (22%);whereasintheoasis,themostabundantphylawereActinobacteria(26%)andProteo- bacteria(24%)(Fig1).ThedesertsoilhadahigherrelativeabundanceofCyanobacteria,Dei- nococcus-Thermus,Firmicutes,Bacteroidetes(Fig1),andAlphaproteobacteria(α- proteobacteria)(Fig2);whileintheoasissoil,foralltreatmentstherewerehigherrelative abundancesofActinobacteria,Acidobacteria,Chloroflexi(Fig1),Gammaproteobacteria(γ- proteobacteria),Betaproteobacteria(β-proteobacteria),Deltaproteobacteria(δ-proteobac- teria),Gemmatimonadetes,andNitrospirae(Fig2).Moreover,archaea(includingCrenarch- aeota)wereonlyfoundinoasissoils(Fig2).Changeswerealsoobservedatfinertaxonomic divisions(Table2).Withintheα-proteobacteria,theproportionsofRhizobiales,Sphingomo- nadales,Rhodobateraleswerelower,buttheRhodospirillaleswerehigherinalltreatmentsof theoasissoil,comparedtothedesertsoil.WithintheActinobacteria,therelativeabundances ofthesubclassesAcidimicrobidaeandActinobacteridaewerehigher,buttheRubrobacteridae werelowerintheoasissoilsthanthedesertsoils.Inaddition,allofthetreatmentsintheoasis alsoresultedinhigherproportionsoftheXanthomonadaleswithintheγ-phaproteobacteria, AnaerolineaewithintheChloroflexi,ClostridialeswithintheFirmicutesandGp6withinthe Acidobacteria,andlowerproportionsoftheBacillaleswithintheFirmicutesthaninthedesert soil(Table2). Assoildepthincreased,therelativeabundanceofCyanobacteriaandActinobacteriarap- idlydecreased,buttheabundanceofProteobacteria,especiallyγ-proteobacteriasignificantly increasedandbecametheoverwhelminglydominantpopulationinthedeepsoilforboth desertandoasis(Fig3).Thefrequenciesandabundancesoffinertaxonomicdivisions(e.g., theordersPseudomonadales,Oceanospirillales,andEnterobacterialeswithintheγ-proteo- bacteria)alsoincreasedcorrespondinglywithdepth(Table3).Irrigationalsohadasignifi- cantimpactonthemicrobialcommunitiesbelowthetopsoil.Andtheresponseofmost microbialtaxabelowthetopsoilwassimilartothatintopsoil(Table3andFig3).However, theresponsesofsomemicrobialpopulationsweredifferent,e.g.,decreasesinthepropor- tionsofActinobacteridae,Acidimicrobidae(Table3),andδ-proteobacteria(Fig3)below thetopsoil,whichcontrastedwiththeirincreasesintopsoil,intheoasiscomparingtothe desert. PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 5/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Fig1.Relativeabundancesofselectedbacterialphylaintopsoil(0–0.2m)fromdesertandoasiswithdifferentfertilizertreatments. Deinococcus=Deinococcus-Thermus.Desert:theoriginalsoilfromwhichtheoasiswasderived. doi:10.1371/journal.pone.0139626.g001 Effectsoffertilizationontheabundanceofmicrobialtaxon Comparedtothetreatmentwithoutfertilizer(CK),thereweresignificanteffectsonthemicro- bialcommunity,especiallyfinertaxonomicdivisionsornon-dominanttaxa,intreatments wherefertilizerwasapplied(Fig2).Inthetopsoil,fertilizerapplicationsincreasedtherelative abundancesofγ-proteobacteria(includingtheorderXanthomonadales),β-proteobacteria,Cre- narchaeota,Nitrospirae,Firmicues,Rhizobiales,andBacillales(Fig2)andslightlydecreased thatofδ-proteobacteriaandGp6(Table2).Belowthetopsoil,fertilizerapplicationincreased theproportionsofγ-proteobacteria,Crenarchaeota,Rhizobiales,andBacillales,butdecreased thatofδ-proteobacteriaandGp6(Table3andFig3),withhigherproportionsoftheEnterobac- terialesandPseudomonadalesalsoobserved(Table3).Thecombinedtreatmentswithorganic fertilizerproducedalargerincreaseofγ-proteobacteriaandNitrospirae. Correlationsbetweensoilpropertiesandmicrobialtaxa Giventhatthestrongestimpactofoasisformationonthemicrobialcommunityoccurredin thetopsoilandmostcommunityresponsesweresimilarthroughoutthesoilprofile,wepresent hereonlytheCCAordinationfortopsoil.Theordinationplotsdemonstratethecommunity PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 6/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Fig2.Relativeabundancesofselectedarchaeaandbacterialtaxaintopsoil(0–0.2m)fromdesertandoasiswithdifferentfertilizertreatments. Desert:theoriginalsoilfromwhichtheoasiswasderived.Differentlettersatthetopofeachcolumnindicatethattreatmentmeansaresignificantlydifferentat p<0.05. doi:10.1371/journal.pone.0139626.g002 differentiationsbetweenthedesertandoasissoils(Fig4A),andbetweendifferentfertilizer applications(Fig4B).InFig4A,thedesertsoilsarecenteredinareaswithlowsoilmoisture andhighEC;whiletheseventreatmentsoftheoasissoilshadarelativelyconcentrateddistri- butionintheoppositearea.Thisindicatesthatthemicrobialcommunitystructureinthedesert soilwascompletelydifferentfromthatoftheoasissoil,whilealltreatmentsintheoasissoil producedroughlysimilarcommunitystructures.However,intheplotwithoutthedesertsoil (Fig4B),fertilizerapplicationsexertedsignificanteffectsonthemicrobialcommunity.These treatmentsweredispersedindifferentareasoftheordinationplot.TheCK,PK,andNKtreat- mentswerecenteredalongagradientwithrelativelyhighEC,pH,andrelativelylowSOCand nutrientcontents.Thecombinedtreatmentswithorganicfertilizers(NPKRandNPKM)were centeredontheareawithhighSOCandnutrientcontentsandlowECandpH.TheNPand NPKtreatmentsweredistributedinanotherarea. Accordingtotheforwardselectionoption,soilwatercontentandEChadsignificantinflu- encesonthemicrobialcommunitystructureduringoasisformation(bothvaluesofPwere 0.002),whileSOCandEChadsignificantinfluencesduringfertilizerapplication(P=0.012 PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 7/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Table2. Relativeabundancesofselectedbacterialtaxaintopsoil(0–0.2m)fromdesertandoasiswithdifferentfertilizertreatments. Taxonomic Name Desert CK PK NK NP NPK NPKR NPKM rank Relativeabundance(%) Phylum Proteobacteria Class α-proteobacteria Order Rhizobiales 6.5a 3.2d 3.5cd 3.8c 3.8c 3.5cd 4.7b 4.0c Order Sphingomonadales 1.3a 0.4bc 0.1c 0.5bc 0.4bc 0.1c 0.7b 0.3bc Order Rhodobaterales 5.8a 0.2d 0.2d 0.7c 1.4b 0.7c 1.0bc 0.8c Order Rhodospirillales 0.5d 2.5a 1.8b 1.8b 1.2c 1.1c 2.7a 2.9a Class γ-proteobacteria Order Xanthomonadales 0.1d 0.4c 1.2b 1.7a 0.8bc 1.1b 2.0a 2.1a Order Pseudomonadales 0.0b 0.3ab 0.1b 0.2ab 0.1b 0.6a 0.4ab 0.3ab Phylum Actinobacteria Subclass Actinobacteridae 4.8e 15.2bc 17.6bc 12.8c 18.2b 18.8b 22.6a 8.9d Subclass Acidimicrobidae 0.8d 1.1d 3.5a 2.3bc 1.9c 2.8b 1.1d 0.9d Subclass Rubrobacteridae 3.3a 3.2a 1.8c 3.0ab 1.9c 2.6b 2.7b 0.7d Phylum Chloroflexi Class Anaerolineae 0.3c 0.8b 1.2ab 1.2ab 0.8b 1.2ab 0.8b 1.6a Phylum Firmicuts Order Bacillales 8.8a 1.6d 2.6bc 2.6bc 2.1c 2.2c 3.2b 2.9b Order Clostridiales 0.0b 0.2a 0.6a 0.2a 0.4a 0.2a 0.2a 0.3a Phylum Acidobacteria Class Gp6 0.5c 2.9a 1.8b 2.4a 1.6b 2.5a 1.4b 1.3b Differentletterswithineachlineindicatethattreatmentmeansaresignificantlydifferentatp<0.05. doi:10.1371/journal.pone.0139626.t002 and0.04).Mostbacterialtaxa(e.g.,Cyanobacteria,Deinococcus-Thermus,Firmicutes,Bacteroi- detes,andα-,β-,γ-proteobacteria)exhibitedsignificantcorrelationswiththesoilwaterandEC (P<0.05).Somemicrobialgroups(e.g.,Deinococcus-Thermus,Acidobacteria,β-proteobacteria, andCrenarchaeotaaeota)wereassociatedcloselywithsoilpH(P<0.05).Meanwhile,positive correlationswerefoundbetweencertainmicrobialtaxa(e.g.,γ-proteobacteria,Nitrospirae,and Crenarchaeota)andSOC,totalNcontents,MBC,andmostenzymeactivities(P<0.05).These resultsdemonstratedthatirrigationhadstrongereffectsonthemicrobialcommunitythanfer- tilizerapplication. Discussion Changesinmicrobialcommunityasaffectedbyoasisformation Theresultsinthisstudyconfirmedourbasichypothesis.Itdemonstratedthatcultivationin thedesertsoilresultedinastrongshiftinthemicrobialcommunitystructurethroughoutthe soilprofile(0–3m)(Fig5).Thelargestchangeintheoverallmicrobialcommunitywas observedinthetopsoil.Whileconvertingdesertintooasis,therelativeabundanceofCyano- bacteriadecreasedfrom25.4to2.5%onaverage,andthatofActinobacteriaincreasedfrom 10.8to26.4%onaverage.TheCyanobacteriawerethereforethemostabundantgroupindesert topsoilandtheActinobacteriabecamethemostabundantgroupinoasistopsoil(Fig1).Cyano- bacteriaparticipateinbothcarbonandnitrogenfixation,andgenerallyoccurinharshdesert environments[31–32].InadditiontoCyanobacteria,otherphotosyntheticgroups(e.g.,the Rhizobiales,Sphingomonadales,andRhodobaterales)werealsopresentinlowerproportionsin PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 8/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Fig3.Relativeabundancesofselectedmicrobialtaxaat0.2–0.6and0.6–3mdepthsindesertandoasissoils.Desert:theoriginalsoilfromwhichthe oasiswasderived;Nofertilizer:thecontrol(CK);Fertilizer:theaveragevaluesofsixfertilizertreatments(PK,NK,NP,NPK,NPKR,andNPKM). Deinococcus=Deinococcus-Thermus.Valuesateachdepthareweightedmeans.Foreachmicrobialtaxon,valuesfordifferentdepthswithinsame treatmentfollowedbythesameuppercaseletterarenotsignificantlydifferent(p>0.05);treatmentmeanswithinsamedepthfollowedbythesamelowercase lettersarenotsignificantlydifferent(p>0.05). doi:10.1371/journal.pone.0139626.g003 theoasis(Table2).Actinobacteriaparticipateinthedecompositionofligninandchitin[33]. Wheatcover/lackoflightandreturnofwheatresiduestothesoilintheoasismayexplain above-mentionedcommunityshift.Meanwhile,therewerealsohigherproportionsoftheDei- nococcus-Thermus,α-proteobacteria,andBacillalespresentindesertsoil(Figs1and2),allof whichareextremophilicgroupsorantagonists,withastrongtolerancetodesiccation,radia- tion,andhighlevelssalinity[34].TheoasissoilhadhigherproportionsoftheR-strategy(e.g., γ-,β-proteobacteria),facultativevegetative(e.g.,Rhodospirillales)andnitrifyingbacteria(e.g., Nitrospirae)(Table2andFig2).Archaeaoccurredonlyinoasissoil.Thereisincreasingevi- denceshowingthatarchaeaareinvolvedinammonia-oxidizingprocess,andmayplaysignifi- cantroleinthecarbonandnitrogencycles[24] Unliketheremarkablechangeinthepredominantgroupintopsoil,theγ-proteobacteria graduallybecametheoverwhelminglydominantgroupwiththeincreaseofsoildepthinboth thedesertandoasissoils,emphasizingtheimportanceofsoildepthasanenvironmentalgradi- entstructuringsoilmicrobialcommunities.Belowthetopsoil,mostmicrobialtaxaexhibited similarresponsestocultivationtothatinthetopsoil.However,duetothemultiplefactors involved(e.g.,soilmoisture,O ,saltcontent,pH,availablenutrients,andsoilparticlecomposi- 2 tion)andtheirinteractionsduringoasisformation,somebacterialtaxa,e.g.,Actinobacteria PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 9/15 ProfileChangesinSoilMicrobialCommunityWhenDesertBecomesOasis Table3. Relativeabundancesofselectedbacterialtaxabelowtopsoil(0.2–3m)fromdesertandoasiswithdifferentfertilizertreatments. Phyla Class/Order Desert Nofertilizer Fertilizer Proteobacteria Rhizobiales 4.8a 3.7c 4.3b Sphingomonadales 1.6a 1.6a 2.0a Rhodobaterales 0.9a 0.2b 0.4b Rhodospirillales 2.2b 3.0a 3.4a Xanthomonadales 0.7c 1.2b 2.5a Pseudomonadales 6.3b 6.6b 8.0a Oceanospirillales 0.5b 3.1a 2.8a Enterobacteriales 10.4a 2.8c 4.9b Actinobacteria Actinobacteridae 4.9a 3.3b 2.6c Acidimicrobidae 0.7a 0.6a 0.4a Rubrobacteridae 2.0a 0.8b 0.7b Chloroflexi Anaerolineae 0.1b 0.4a 0.4a Firmicutes Bacillales 6.8b 6.8b 8.3a Clostridiales 0.3b 1.8a 1.5a Acidobacteria Gp6 1.4b 2.8a 1.6b Desert:theoriginalsoilfromwhichtheoasiswasderived;Nofertilizer:thecontrol(CK);Fertilizer:theaveragevaluesofsixfertilizertreatments(PK,NK, NP,NPK,NPKR,andNPKM).Valuesatthedepthareweightedmeans.Differentletterswithineachlineindicatethattreatmentmeansaresignificantly differentatp<0.05. doi:10.1371/journal.pone.0139626.t003 Fig4.Ordinationplotsoftheresultsfromcanonicalcorrespondenceanalysis(CCA)intopsoil(0–0.2m)toexploretherelationshipbetween microbialpopulationsandsoilproperties,suchassoilorganiccarbon(SOC),totalnitrogen(TN),totalphosphorus(TP),soilpH,electric conductivity(EC),andsoilwatercontent(SWC)fordifferentfertilizertreatments(CK,PK,NK,NP,NPK,NPKRandNPKM)with(A)andwithout desertsoil(B).Cyanobacteria=Cya,Deinococcus-Thermus=Dei,Actinobacteria=Act,Alphaproteobacteria=Alp,Betaproteobacteria=Bet, Gammaproteobacteria=Gam,Deltaproteobacteria=Del,Acidobacteria=Aci,Firmicutes=Fir,Chloroflexi=Chl,Gemmatimonadetes=Gem, Nitrospirae=Nit,Planctomycetes=Pla,Bacteroidetes=Bac,Crenarchaeota=Cre. doi:10.1371/journal.pone.0139626.g004 PLOSONE|DOI:10.1371/journal.pone.0139626 October1,2015 10/15

Description:
dance) were most abundant in desert soil, while Actinobacteria (26%) were most abundant in oasis soil. 1) National Natural Science Foundation of China. (grant no: design, data collection and analysis, decision to publish, or management practices and phenological stage of Phaseolus vulgaris.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.