ebook img

Products of finite groups PDF

347 Pages·2010·1.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Products of finite groups

De Gruyter Expositions in Mathematics 53 Editors Victor P.Maslov, Academy of Sciences, Moscow Walter D.Neumann, Columbia University, New York Raymond O.Wells, Jr., International University, Bremen De Gruyter Expositions in Mathematics 20 SemigroupsinAlgebra,GeometryandAnalysis,K.H.Hofmann,J.D.Lawson,E.B.Vinberg (Eds.) 21 CompactProjectivePlanes,H.Salzmann,D.Betten,T.Grundhöfer,H.Hähl,R.Löwen, M.Stroppel 22 AnIntroductiontoLorentzSurfaces,T.Weinstein 23 LecturesinRealGeometry,F.Broglia(Ed.) 24 EvolutionEquationsandLagrangianCoordinates,A.M.Meirmanov,V.V.Pukhnachov, S.I.Shmarev 25 CharacterTheoryofFiniteGroups,B.Huppert 26 PositivityinLieTheory:OpenProblems,J.Hilgert,J.D.Lawson,K.-H.Neeb,E.B.Vinberg (Eds.) 27 AlgebraintheStone-CˇechCompactification,N.Hindman,D.Strauss 28 HolomorphyandConvexityinLieTheory,K.-H.Neeb 29 Monoids,ActsandCategories,M.Kilp,U.Knauer,A.V.Mikhalev 30 RelativeHomologicalAlgebra,E.E.Enochs,O.M.G.Jenda 31 NonlinearWaveEquationsPerturbedbyViscousTerms,V.P.Maslov,P.P.Mosolov 32 ConformalGeometryofDiscreteGroupsandManifolds,B.N.Apanasov 33 CompositionsofQuadraticForms,D.B.Shapiro 34 ExtensionofHolomorphicFunctions,M.Jarnicki,P.Pflug 35 LoopsinGroupTheoryandLieTheory,P.T.Nagy,K.Strambach 36 AutomaticSequences,F.v.Haeseler 37 ErrorCalculusforFinanceandPhysics,N.Bouleau 38 SimpleLieAlgebrasoverFieldsofPositiveCharacteristic.I.StructureTheory,H.Strade 39 Trigonometric Sums in Number Theory and Analysis, G. I. Arkhipov, V. N. Chubarikov, A.A.Karatsuba 40 EmbeddingProblemsinSymplecticGeometry,F.Schlenk 41 ApproximationsandEndomorphismAlgebrasofModules,R.Göbel,J.Trlifaj 42 SimpleLieAlgebrasoverFieldsofPositiveCharacteristic.II.ClassifyingtheAbsoluteToral RankTwoCase,H.Strade 43 ModulesoverDiscreteValuationDomains,P.A.Krylov,A.A.Tuganbaev 44 Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems, M. Gyllenberg, D.S.Silvestrov 45 DistributionTheoryofAlgebraicNumbers,P.-C.Hu,C.-C.Yang 46 GroupsofPrimePowerOrder.Volume1,Y.Berkovich 47 GroupsofPrimePowerOrder.Volume2,Y.Berkovich,Z.Janko 48 StochasticDynamicsandBoltzmannHierarchy,D.Ya.Petrina 49 AppliedAlgebraicDynamics,V.Anashin,A.Khrennikov 50 UltrafiltersandTopologiesonGroups,Y.G.Zelenyuk 51 StateObserversforLinearSystemswithUncertainty,S.K.Korovin,V.V.Fomichev 52 StabilityAnalysisofImpulsiveFunctionalDifferentialEquations,I.Stamova Products of Finite Groups by Adolfo Ballester-Bolinches Ramo´n Esteban-Romero Mohamed Asaad De Gruyter MathematicsSubjectClassification2010 Primary20D40,20D10,20D35; Secondary20D30,20E15,20F16,20F17 ISBN 978-3-11-020417-9 e-ISBN 978-3-11-022061-2 ISSN 0938-6572 LibraryofCongressCataloging-in-PublicationData Asaad,Mohamed. Productsoffinitegroups/byMohamedAsaad,AdolfoBallester- Bolinches,Ramo´nEsteban-Romero. p.cm.(cid:2)(DeGruyterexpositionsinmathematics;53) Includesbibliographicalreferencesandindex. ISBN978-3-11-020417-9(alk.paper) 1.Finitegroups. I.Ballester-Bolinches,Adolfo. II.Esteban- Romero,Ramo´n. III.Title. QA177.A78 2010 5121.23(cid:2)dc22 2010031029 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. ”2010WalterdeGruyterGmbH&Co.KG,Berlin/NewYork Typesetting:Da-TeXGerdBlumenstein,Leipzig,www.da-tex.de Printing:Hubert&Co.GmbH&Co.KG,Göttingen (cid:3)Printedonacid-freepaper PrintedinGermany www.degruyter.com Fortheoneswelove: Fran Anita Ramón Ana JuanMiguel JoséLuis Beatriz Asaad(inmemoriam) Aisha(inmemoriam) Fatma(inmemoriam) Preface Debajodelasmultiplicaciones hayunagotadesangredepato. Debajodelasdivisiones hayunagotadesangredemarinero. Debajodelassumas,unríodesangretierna; ... FedericoGarcíaLorca NewYork(oficinaydenuncia), PoetaenNuevaYork The central theme of this book is the structural study of a finite group which can be factorisedasaproductoffinitelymanypairwisepermutablesubgroups. Theoriginof the theory may be traced back to the year 1903, when Burnside published his well- knownpa-lemma;hediscoveredthatafinitegroupcannotbesimpleifitfactorisesas theproductofaSylowsubgroupandthecentraliserofanon-trivialelement. Oneyear later, heusedthisresulttoprovehiscelebratedpaqq-theoremaboutthesolubilityof finitegroupswhoseorderisdivisiblebyatmosttwoprimes,whichisalsoatheorem about factorised groups. Burnside’s early work was followed by Hall in the decade 1928–1937 in a great sequence of papers which established the basic theory of finite solublegroups: thisworkdeterminedthedirectionofresearchinfinitesolublegroups formanyyears,andmayhavewellprovidedthemotivationforanewfieldofresearch in the theory of factorised groups; he discovered that a finite group is soluble if and only if it is the product of pairwise permutable Sylow subgroups. But it was a short paper of Itô in 1955 which set the theory of products in motion. He shows that any (not necessarily finite) group is metabelian whenever it is the product of two abelian subgroups. AfterappearanceofItô’stheorem,andmotivatedbytheresultsofBurnside and Hall, attention is shifted to finite groups that are product of nilpotent subgroups, the conjecture being that such groups are soluble. In 1958, Wielandt confirms this conjectureinthecoprimecaseandKegelinthegeneralonein1962. Theoutcomeof this research is known nowadays as the theorem of Kegel and Wielandt: every finite group which is factorised as a product of pairwise permutable nilpotent subgroups is soluble. However it is not known whether its derived length can be bounded in terms of the nilpotency classes of the factors. Nor it is known whether the Kegel viii Preface and Wielandt theorem can be extended to infinite groups. In the much more special case when the factors are normal and nilpotent, then the product is nilpotent. This is awell-knownresultofFitting. However,theproductofpairwisenormalsupersoluble subgroups need not be supersoluble even in the finite case. A natural path of inquiry opens up when one asks how the structure of the factors affects the structure of the factorisedgroupwhentheyareconnectedbycertainpermutabilityconditions: totally andmutuallypermutableproductsnaturallyemerge. ItwasShunkovin1964whofirst studiedpairwisetotallypermutablesubgroupsofprimepowerorder. Shunkov’searly workwasfollowedin1989byaseminalpaperofAsaadandShaalanwhichestablished thebasictheoryoftotallyandmutuallypermutableproducts. Sincethattimetherewas graduallyemergingabodyoftechniquesandaseriesofgeneralmethodsforstudying thesekindofproducts. Althoughtheentirefieldispresentlyinastateoffermentand fluidity,adegreeofstabilityappearstobesettlingovercertainaspectsofthesubject. Apart from the relevant monographs of N. S. Chernikov [95] (in Russian) of 1987 andtheonebyAmberg,Franciosi,anddeGiovanni[9]of1992,whichcontainmany beautiful results about products of groups, especially in the infinite case, none of the existing books on group theory describes more recent developments on products of finite groups. The present volume has therefore the modest object of presenting in a unified form a comprehensible account of more than twenty years of work on this subject, focusing the attention on products of finite nilpotent groups and products of mutually and totally permutable finite groups. There are some omissions that have been caused rather by the necessity of keeping the project within reasonable limits. Thus, for example, the systematic treatment of the finite products of connected sub- groups with respect to a class of groups, apart from a brief outline without proofs in Chapter5,hasbeenomitted. Thisisanareathathasbeenthesubjectrecentlyofgreat dealofinvestigation. Wehavenotdealtwithfactorisationsoffinitesimplegroupsnor trifactorised groupseither. Nevertheless, wehopethatthisbookwillserveasabasic referenceinthesubjectarea,asatextforpostgraduatestudies,andalsoasasourceof researchideas. Allofourworkisconcernedwithfinitegroups. Thereforeourunspokenruleisthat all groups are finite. Chapter 1 is foundational material, and it is written on the as- sumptionthatthereaderhasabasicknowledgeingrouptheory,representationtheory, and theory of classes of groups, such as which may be obtained from reading Chap- ters A, B, I, and II of the book of Doerk and Hawkes [119], and Chapters 2 and 4 of the book of Ballester-Bolinches and Ezquerro [47]. In selecting or rejecting material for this chapter, we have held steadfast to a single-minded purpose: to present only those results deemed essential for applications in the rest of the book. In Chapter 2 classes of groups defined by means of certain permutability conditions which have beenprovedusefulinquestionsinvolvingproductsarediscussed. Amajorpartofthe chapterisdevotedtocharacterisation theorems. Chapter3providesacomprehensive lookatproductsoftwonilpotentgroups,focusingtheattentiononproductsofabelian groups,structuretheorems,andHall–Higmantyperesults. Thestudyofthesubgroup Preface ix structureofpairwisemutuallyandtotallypermutableproductsisthemainaimofthe Chapter 4. The last chapter of the book is dedicated to the study of the behaviour of suchproductswithrespecttoclassesofgroups. WewouldliketoacknowledgeourgratitudetoJamesC.Beidleman,JonasBochtler, ÁngelCarocca,NikolayS.Chernikov,JohnCossey,LuisM.Ezquerro,AndrewFrans- man, Michiel Hazewinkel, Hermann Heineken, Lev S. Kazarin, Leonid A. Kurda- chenko, Thomas Masiwa, Victor D. Mazurov, María Carmen Pedraza-Aguilera, and Alexander N. Skiba. We wish to express our thanks to Robert Plato and Simon Al- broscheit for their continuous support from Walter de Gruyter during the production ofthisbook. Finally,wethanktheMinisteriodeEducaciónyCiencia(SpanishGov- ernment) and FEDER (European Union) for their financial support via the research grantMTM2007-68010-C03-02. AdolfoBallester-Bolinches,RamónEsteban-Romero,andMohamedAsaad Torres-Torres,València,andCairo,August2010

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.