ebook img

Production Systems Engineering PDF

673 Pages·2009·18.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Production Systems Engineering

Production Systems Engineering Production Systems Engineering Jingshan Li Electrical and Computer Engineering, University of Kentucky Lexington, Kentucky Semyon M. Meerkov Electrical and Computer Science, University of Michigan Ann Arbor, Michigan Jingshan Li University of Kentucky Electrical and Computer Engineering Lexington, Kentucky 40506 Semyon M. Meerkov University of Michigan Electrical and Computer Science Ann Arbor, Michigan 48109 ISBN 978-0-387-75578-6 eISBN 978-0-387-75579-3 Library of Congress Control Number: 2008937464 © 2009 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Cover illustration: In 1932, the famous Mexican artist, Diego Rivera, was commissioned by Edsel Ford, President of Ford Motor Company, to create two murals for the Detroit Institute of Arts. The murals, completed in 1933, are currently located on the Northern and Southern walls of the Detroit Institute of Art’s Rivera Court. The cover image of this book is a fragment of the Northern Wall’s mural. It depicts operations involved in the production of the engine and trans- mission for the 1932 Ford V8. Although the manufacturing technology has changed dramatically since then, the fundamental principles of production systems did not. This textbook is devoted to these principles. Photograph ©2001 The Detroit Institute of Arts Printed on acid-free paper. 9 8 7 6 5 4 3 2 1 springer.com To the memory of SMM’s parents, To JL’s parents, and To our families, whose love and support made this book possible JL and SMM v “... of making many books, there is no end; and much study is a weariness of the flesh.” Ecclesiastes, 12:12 Preface Production systems are a major part of modern technology. However, there hasnotbeenasingleuniversity-leveltextbookdevotedexclusivelytothistopic. This volume is intended to fill this void. It presents the area of production systems basedon the first principles and at the same level of rigor as other engineering disciplines. Therefore, we use the title Production Systems Engineering (PSE). Alongwithrigor, thisbookemphasizespracticalapplications. Infact, every problem considered here originated on the factory floor and, after conceptu- alizations and analyses, was implemented in practice, leading to productivity improvements and savings. The case studies included in this text are based on these applications. Thus, a rigorous, first-principle-based presentation of PSE problems of practical significance is the main emphasis of this textbook. Preliminaryversionsofthistexthavebeenusedbyundergraduateandgrad- uate students in courses offered in the US (the University of Michigan and the University of Kentucky), China (Tsinghua University) and Israel (Technion), and found overwhelming approval of students and instructors alike. We hope that the publication of this volume will contribute to engineering education of all students interested in production and, as a result, to an increased efficiency in manufacturing. Jingshan Li Lexington, Kentucky Semyon M. Meerkov Ann Arbor, MI August 15, 2008 vii Contents Synopsis I. BACKGROUNDMATERIALANDMATHEMAT- ICAL MODELING 1 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Mathematical Tools: Elements of Probability Theory . . . . . . 13 3. Mathematical Modeling of Production Systems . . . . . . . . . . 61 II. SERIAL PRODUCTION LINES WITH BER- NOULLI MODEL OF MACHINE RELIABILITY 121 4. Analysis of Bernoulli Lines . . . . . . . . . . . . . . . . . . . . . 123 5. Continuous Improvement of Bernoulli Lines . . . . . . . . . . . . 167 6. Design of Lean Bernoulli Lines . . . . . . . . . . . . . . . . . . . 201 7. Closed Bernoulli Lines. . . . . . . . . . . . . . . . . . . . . . . . 221 8. Product Quality in Bernoulli Lines. . . . . . . . . . . . . . . . . 247 9. Customer Demand Satisfaction in Bernoulli Lines . . . . . . . . 293 10. Transient Behavior of Bernoulli Lines . . . . . . . . . . . . . . . 315 III. SERIAL PRODUCTION LINES WITH CONTIN- UOUS TIME MODELS OF MACHINE RELIABILITY341 11. Analysis of Exponential Lines . . . . . . . . . . . . . . . . . . . 343 12. Analysis of Non-exponential Lines . . . . . . . . . . . . . . . . . 391 13. Improvement of Continuous Lines . . . . . . . . . . . . . . . . . 411 14. Design of Lean Continuous Lines . . . . . . . . . . . . . . . . . . 441 15. Customer Demand Satisfaction in Continuous Lines . . . . . . . 471 IV. ASSEMBLY SYSTEMS 493 16. Assembly Systems with Bernoulli Model of Machine Reliability . 495 17. AssemblySystemswithContinuousTimeModelsofMachineRe- liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 V. SUMMARY, PSE TOOLBOX, AND PROOFS 545 18. Summary of Main Facts of Production Systems Engineering . . 547 19. PSE Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 20. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Epilogue 653 Abbreviations and Notations 655 Index 661 ix Contents Dedication v Preface vii Contents Synopsis ix Foreword xxiii I BACKGROUNDMATERIALANDMATHEMAT- ICAL MODELING 1 1 Introduction 3 1.1 Main Areas of Manufacturing . . . . . . . . . . . . . . . . . . . . 3 1.2 Main Problems of Production Systems Engineering . . . . . . . . 4 1.2.1 Complicating phenomena . . . . . . . . . . . . . . . . . . 4 1.2.2 Analysis, continuous improvement, and design problems . 6 1.2.3 Fundamental laws of Production Systems Engineering . . 7 1.2.4 Techniques used in this textbook . . . . . . . . . . . . . . 8 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . 10 2 Mathematical Tools: Elements of Probability Theory 13 2.1 Random Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Axioms of probability and their corollaries . . . . . . . . . 14 2.1.3 Conditional probability . . . . . . . . . . . . . . . . . . . 16 2.1.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.5 Total probability formula . . . . . . . . . . . . . . . . . . 19 2.1.6 Bayes’s formula . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Discrete random variables . . . . . . . . . . . . . . . . . . 22 2.2.3 Continuous random variables . . . . . . . . . . . . . . . . 26 xi xii CONTENTS 2.2.4 Expected value, variance, and coefficient of variation . . . 36 2.2.5 Vector random variables . . . . . . . . . . . . . . . . . . . 38 2.2.6 Asymptotic properties of sums of random variables . . . . 40 2.3 Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.2 Continuous time, continuous space random processes . . . 44 2.3.3 Markov processes . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6 Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . 59 3 Mathematical Modeling of Production Systems 61 3.1 Types of Production Systems . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Serial production lines . . . . . . . . . . . . . . . . . . . . 62 3.1.2 Assembly systems . . . . . . . . . . . . . . . . . . . . . . 64 3.2 Structural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 Mathematical Models of Machines . . . . . . . . . . . . . . . . . 68 3.3.1 Timing issues . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.2 Machine reliability models . . . . . . . . . . . . . . . . . . 70 3.3.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3.4 Machine model identification . . . . . . . . . . . . . . . . 75 3.3.5 Calculating parameters of aggregated machines . . . . . . 77 3.3.6 Machine quality models . . . . . . . . . . . . . . . . . . . 82 3.4 Mathematical Models of Buffers . . . . . . . . . . . . . . . . . . . 83 3.4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.2 Buffer parameters identification . . . . . . . . . . . . . . . 83 3.5 Modeling Interactions between Machines and Buffers . . . . . . . 84 3.5.1 Slotted time case . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.2 Continuous time case . . . . . . . . . . . . . . . . . . . . 85 3.6 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . 86 3.6.1 Production rate and throughput . . . . . . . . . . . . . . 86 3.6.2 Work-in-process and finished goods inventory . . . . . . . 87 3.6.3 Probabilities of blockages and starvations . . . . . . . . . 88 3.6.4 Residence time . . . . . . . . . . . . . . . . . . . . . . . . 89 3.6.5 Due-time performance . . . . . . . . . . . . . . . . . . . . 90 3.6.6 Transient characteristics . . . . . . . . . . . . . . . . . . . 90 3.6.7 Evaluating performance measures on the factory floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.7 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.8 Steps of Modeling, Analysis, Design, and Improvement . . . . . . 92 3.8.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.8.2 Analysis, continuous improvement, and design . . . . . . 92 3.9 Simplification: Transforming Exponential Models into Bernoulli Models . . . . . . . . . . . . . . . . . . . . 93 3.9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.9.2 Exponential and Bernoulli lines considered . . . . . . . . 93 CONTENTS xiii 3.9.3 The exp-B transformation . . . . . . . . . . . . . . . . . . 94 3.9.4 The B-exp transformation . . . . . . . . . . . . . . . . . . 100 3.9.5 Exp-B and B-exp transformations for assembly systems . 101 3.10 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.10.1 Automotive ignition coil processing system . . . . . . . . 102 3.10.2 Automotive paint shop production system . . . . . . . . . 106 3.10.3 Automotive ignition module assembly system . . . . . . . 110 3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.13 Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . 117 II SERIALPRODUCTIONLINESWITHBERNOULLI MODEL OF MACHINE RELIABILITY 121 4 Analysis of Bernoulli Lines 123 4.1 Two-machine Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.1 Mathematical description . . . . . . . . . . . . . . . . . . 124 4.1.2 Steady state probabilities . . . . . . . . . . . . . . . . . . 126 4.1.3 Formulas for the performance measures . . . . . . . . . . 131 4.1.4 Asymptotic properties . . . . . . . . . . . . . . . . . . . . 133 4.2 M >2-machine Lines . . . . . . . . . . . . . . . . . . . . . . . . 133 4.2.1 Mathematical description and approach . . . . . . . . . . 133 4.2.2 Aggregation procedure and its properties . . . . . . . . . 137 4.2.3 Formulas for the performance measures . . . . . . . . . . 141 4.2.4 Asymptotic properties of M >2-machine lines . . . . . . 143 4.2.5 Accuracy of the estimates . . . . . . . . . . . . . . . . . . 143 4.3 System-Theoretic Properties . . . . . . . . . . . . . . . . . . . . . 154 4.3.1 Static laws of production systems . . . . . . . . . . . . . . 154 4.3.2 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.3.3 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.4.1 Automotive ignition coil processing system . . . . . . . . 156 4.4.2 Automotive paint shop production system . . . . . . . . . 159 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.7 Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . 165 5 Continuous Improvement of Bernoulli Lines 167 5.1 Constrained Improvability . . . . . . . . . . . . . . . . . . . . . . 168 5.1.1 Resource constraints and definitions . . . . . . . . . . . . 168 5.1.2 Improvability with respect to WF . . . . . . . . . . . . . 169 5.1.3 Improvability with respect to WF and BC simultaneously 172 5.1.4 Improvability with respect to BC . . . . . . . . . . . . . . 174 5.2 Unconstrained Improvability. . . . . . . . . . . . . . . . . . . . . 176 5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 176 xiv CONTENTS 5.2.2 Identification of bottlenecks in two-machine lines . . . . . 179 5.2.3 Identification of bottlenecks in M >2-machine lines . . . 179 5.2.4 Potency of buffering . . . . . . . . . . . . . . . . . . . . . 189 5.2.5 Designing continuous improvement projects . . . . . . . . 190 5.3 Measurement-based Management of Production Systems . . . . . 190 5.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.4.1 Automotive ignition coil processing system . . . . . . . . 194 5.4.2 Automotive paint shop production system . . . . . . . . . 195 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.7 Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . 199 6 Design of Lean Bernoulli Lines 201 6.1 Parametrization and Problem Formulation . . . . . . . . . . . . . 201 6.2 Lean Buffering in Bernoulli Lines with Identical Machines . . . . 202 6.2.1 Two-machine lines . . . . . . . . . . . . . . . . . . . . . . 202 6.2.2 Three-machine lines . . . . . . . . . . . . . . . . . . . . . 204 6.2.3 M >3-machine lines . . . . . . . . . . . . . . . . . . . . . 204 6.3 Lean Buffering in Serial Lines with Non-identical Bernoulli Ma- chines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.3.1 Two-machine lines . . . . . . . . . . . . . . . . . . . . . . 207 6.3.2 M >2-machine lines . . . . . . . . . . . . . . . . . . . . . 208 6.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 6.4.1 Automotive ignition coil processing system . . . . . . . . 216 6.4.2 Automotive paint shop production system . . . . . . . . . 217 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.7 Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . 219 7 Closed Bernoulli Lines 221 7.1 System Model and Problem Formulation . . . . . . . . . . . . . . 223 7.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.1.2 Problems addressed . . . . . . . . . . . . . . . . . . . . . 223 7.2 Performance Analysis, Monotonicity, Reversibility, and Unimpeding Closed Lines . . . . . . . . . . . . 225 7.2.1 Two-machine lines . . . . . . . . . . . . . . . . . . . . . . 225 7.2.2 M >2-machine lines . . . . . . . . . . . . . . . . . . . . . 228 7.3 Improvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 7.3.1 Two-machine lines . . . . . . . . . . . . . . . . . . . . . . 230 7.3.2 M >2-machine lines . . . . . . . . . . . . . . . . . . . . . 231 7.3.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 235 7.4 Bottleneck Identification . . . . . . . . . . . . . . . . . . . . . . . 236 7.4.1 Two-machine lines . . . . . . . . . . . . . . . . . . . . . . 236 7.4.2 M >2-machine lines . . . . . . . . . . . . . . . . . . . . . 237 7.5 Leanness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.