ebook img

Production of four-jets in single- and double-parton scattering within high-energy factorization PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Production of four-jets in single- and double-parton scattering within high-energy factorization

Production of four-jets in single- and double-parton scattering within high-energy factorization 7 1 0 2 b Krzysztof Kutak e F InstituteofNuclearPhysics,PolishAcademyofSciences, Radzikowskiego152,31-342Kraków,Poland 4 2 E-mail: [email protected] ] h We report on a first study of 4-jet production in a complete high-energy factorization (HEF) p - framework[1,2]. Weincludeanddiscusscontributionsfrombothsingle-partonscattering(SPS) p e and double-parton scattering (DPS) and compare to the measured data. The DPS HEF result is h considerablysmallerthantheoneobtainedwithcollinearfactorization. Themechanismleading [ tothisdifferenceisofkinematicalnature.Incontrasttothecollinearapproach,theHEFapproach 2 v nicelydescribesthedistributionofthe∆Svariable,whichinvolvesallfourjetsandtheirangular 0 correlations. 1 4 0 0 . 1 0 7 1 : v i X r a 38thInternationalConferenceonHighEnergyPhysics 3-10August2016 Chicago,USA (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Four-jet 1. Introduction Sofar,complete(n≥4)-jetproductionviasingle-partonscattering(SPS)wasdiscussedonly withincollinearfactorization. Resultsuptonext-to-leading(NLO)precisioncanbefoundin[3,4]. Here we report on recent study of production of four jets including SPS processes and Double- parton scattering (DPS) within high-energy (k -)factorization (HEF) [5, 6, 7, 8] 1. Double-parton T scattering (DPS) was claimed to have been observed for the first time at the Tevatron [10]. In the LHC era, with much higher collision energies available, the field has received a new impulse andseveralexperimentalandtheoreticalstudiesaddresstheproblemofpinningdownDPSeffects. Even just from purely theoretical point of view, the problem is quite subtle [11]. As for the non perturbativeside, itisinprinciplenecessary, whenconsideringadouble-partonscattering, totake intoaccountthecorrelationsbetweenthetwopartonscomingfromthesameprotonsandinvolved in the scattering processes. Such an information should be encoded in a set of double parton distribution functions (DPDFs), generalising usual parton distribution functions (PDFs). Some successfulattemptstogeneralizetheusualevolutionandtohaverelevanceforphenomenologyare becomingtoappearonlyrecently[13,14,15,16]. In the meanwhile, phenomenological and experimental studies of double-parton scattering rely on factorized Ansatz for the DPDFs, which amount to neglecting momentum correlations between partons and introducing an effective cross section, σ . The latter quantity is usually eff extracted from experimental data. In the present approach we will use the factorized Ansatz and concentrateonthedifferencebetweenleading-ordercollinearandhigh-energy-factorizationresults. The latter includes effectively higher-order corrections. For most of high-energy reactions the single-parton scattering dominates over the double-parton scattering. The extraordinary example is double production of cc¯ pairs [12]. For four-jet production, disentangling the ordinary SPS contributions from the DPS corrections can be quite challenging for several reasons: first of all, itisnecessarytodefinesufficientlysensitive,process-dependentobervables,w.r.t. whichtheDPS differentialcrosssectionmanifestlydominatesatleastinsomecornersofphasespace. 2. Single-partonscatteringproductionoffourjets TheHEFfactorizationformulaforthecalculationoftheinclusivepartonic4-jetcrosssection attheBornlevelreads (cid:90) dx dx σB = ∑ 1 2d2k d2k F(x ,k ,µ )F (x ,k ,µ ) 4−jets x x T1 T2 i 1 T1 F j 2 T2 F i,j 1 2 (cid:32) (cid:33) 1 4 d3k 4 × ∏ l Θ (2π)4δ x P +x P +(cid:126)k +(cid:126)k −∑k |M(i∗,j∗→4part)|2. 2sˆ (2π)32E 4−jet 1 1 2 2 T1 T2 i l=i l l=1 (2.1) HereF(x ,k ,µ )isaTMD(TransversalMomentumDependent)[19]distributionfunction i k Tk F for a given type of parton carrying x momentum fractions of the proton and evaluated at the 1,2 1foroverviewoftheframeworksee[9] 1 Four-jet factorizationscale µ . Theindexl runsoverthefourpartonsinthefinalstate,thepartoniccenter F of mass energy squared is sˆ=2x x P ·P; the function Θ takes into account the kinematic 1 2 i j 4−jet cuts applied and M →4part is the gauge invariant matrix element for 2→4 particle scattering with two initial off-shell legs calculated numerically with a numerical package [18]. It includes symmetrization effects due to identity of particles in the final state and new degrees of freedom introduced via(cid:126)k , which are the parton’s transverse momenta, i.e. the momenta perpendicular Tk to the collision axis. The formula is valid when the x’s are not too large and not too small when complicationsfromnonlinearitiesmayeventuallyarise[17]. 3. Double-partonscatteringproductionoffourjets Single-partonscatteringcontributionsareexpectedtobedominantforhighmomentumtrans- fer,asitishighlyunlikelythattwopartonsfromoneprotonandtwofromtheotheroneareenergetic enough for two hard scatterings to take place, as the behaviour of the PDFs for large x suggests. However,asthecutsonthetransversemomentaofthefinalstatearesoftened,awindowopensto possiblyobservesignificantdoublepartonscatteringeffects,asoftenstatedintheliteratureonthe subject. First of all, let us recall the formula usually employed for the computation of DPS cross sections,adjustingittothe4-partonfinalstate, dσB m dσB(i j →k l ) dσB(i j →k l ) 4−jet,DPS = ∑ 1 1 1 1 2 2 2 2 , (3.1) dξ dξ σ dξ dξ 1 2 eff i1,j1,k1,l1;i2,j2,k2,l2 1 2 where the σ(ab→cd) cross sections are obtained by restricting formula (2.1) to a single channel andthesymmetryfactormis1unlessthetwohardscatteringsareidentical,inwhichcaseitis1/2, so as to avoid double counting them. Above ξ and ξ stand for generic kinematical variables for 1 2 the first and second scattering, respectively. The effective cross section σ can be interpreted as eff ameasureofthetransversecorrelationofthetwopartonsinsidethehadrons,whereasthepossible longitudinal correlations are usually neglected. In this paper we use σ provided by the CDF, eff D0collaborationsandrecentlyconfirmedbytheLHCbcollaborationσ =15mb,whenallSPS eff mechanismsofdoublecharmproductionareincluded. 3.1 ComparisontoCMSdata AsdiscussedinRef.[21],sofartheonlyexperimentalanalysisoffour-jetproductionrelevant fortheDPSstudieswasrealizedbytheCMScollaboration[20]. Thecutsusedinthisanalysisare p >50GeVforthefirstandsecondjets, p >20GeVforthethirdandfourthjets,|η|<4.7and T T thejetconeradiusparameter∆R>0.5. It goes without saying that the LO result with soft cuts applied needs refinements from NLO contributions. For this reason, in the following we will always perform comparisons only to data (re)normalisedtothetotal(SPS+DPS)crosssections. WhatisinterestingintheHEFresult, com- paredtocollinearfactorization,isthedramaticdampingoftheDPScontribution. InFigs.1and2 wecomparethepredictionsinHEFtotheCMSdata. HereboththeSPSandDPScontributionsare normalizedtothetotalcrosssection,i.e. thesumoftheSPSandDPScontributions. Inallcasesthe renormalizedtransversemomentumdistributionsagreewiththeCMSdata. However,theabsolute crosssectionsobtainedinthiscasewithintheHEFapproacharetoolarge. 2 Four-jet 1 p p fi 4 jets X s = 7 TeV 1 p p fi 4 jets X s = 7 TeV 1] 10-1 SPS HEF 1] 10-1 SPS HEF -V 10-2 SPS collinear -V 10-2 SPS collinear e e [GT1100--43 DDPPSS HcoEllFinear [GT1100--43 DDPPSS HcoEllFinear dp 10-5 dp 10-5 / / sd 10-6 |y| < 4.7 sd 10-6 |y| < 4.7 10-7 CMS data 10-7 CMS data s1/ 10-8 13srtd,, 24ntdh jjeett:: ppT >> 5200 GGeeVV s1/ 10-8 13srtd,, 24ntdh jjeett:: ppT >> 5200 GGeeVV T T 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 SPS HEFData 012...25551 Leading jet pT [GeV] SPS HEFData 012...25551 Leading jet pT [GeV] 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 Leading jet p [GeV] 2nd leading jet p [GeV] T T Figure1: ComparisonoftheLOcollinearandHEFpredictionstotheCMSdataforthe1stand2ndleading jets. InadditionweshowtheratiooftheSPSHEFresulttotheCMSdata. 1 p p fi 4 jets X s = 7 TeV 1 p p fi 4 jets X s = 7 TeV 10-1 10-1 -1]V 10-2 SPS HEF -1]V 10-2 SPS HEF Ge 10-3 SDPPSS cHoEllFinear Ge 10-3 SDPPSS cHoEllFinear [T1100--54 DPS collinear [T1100--54 DPS collinear /dp 1100--76 /dp 1100--76 13srtd, ,2 4ntdh jjeett:: ppTT >> 5200 GGeeVV sd sd 10-8 10-8 s1/ 10-9 |y| < 4.7 1st, 2nd jet: p > 50 GeV s1/ 10-9 |y| < 4.7 10-10 CMS data 3rd, 4th jet: pT > 20 GeV 10-10 CMS data T SPS HEFData 246 50 100 150 3rd2 0l0eadin2g50 jet pT3 0 0 [GeV35]0 400 450 500 SPS HEFData 231 50 100 150 3rd2 0l0eadin2g50 jet pT3 0 0 [GeV35]0 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 3rd leading jet p [GeV] 4th leading jet p [GeV] T T Figure2: ComparisonoftheLOcollinearandHEFpredictionstotheCMSdataforthe3rdand4thleading jets. InadditionweshowtheratiooftheSPSHEFresulttotheCMSdata. Not only transverse momentum dependence is interesting. The CMS collaboration extracted also a more complicated observables [20]. One of them, which involves all four jets in the final state,isthe∆Svariable,definedinRef.[20]astheanglebetweenpairsoftheharderandthesofter jets,where(cid:126)p (j,j )standsforthesumofthetransversemomentaofthetwojetsinarguments. T i k In Fig. 3 we present our HEF prediction for the normalized to unity distribution in the ∆S variable. Our HEF result approximately agrees with the experimental ∆S distribution. In contrast theLOcollinearapproachleadsto∆S =0, i.e. aDirac-deltapeakat∆S =0forthedistributionin ∆S. For the DPS case this is rather trivial. The two hard and two soft jets come in this case from the same scatterings and are back-to-back (LO), so each term in the argument of arccos is zero (jets are balanced in transverse momenta). For the SPS case the transverse momenta of the two jetpairs(withhardjetsandsoftjets)areidenticalandhaveoppositedirection(thetotaltransverse momentumofallfourjetsmustbezerofromthemomentumconservation). Thenitiseasytosee thattheargumentofarccosisjust-1. Thismeans∆S =0. Theaboverelationsarenotfullfilledin the HEF approach. The SPS contribution clearly dominates and approximately gives the shape of 3 Four-jet the∆Sdistribution. ItisanywayinterestingthatwedescribethedataviapQCDeffectswithinour HEFapproachwhichareinRef.[20]describedbyparton-showersandsoftMPIs. 10 p p fi 4 jets X s = 7 TeV -1]d 13srtd,, 24ntdh jjeett:: ppT >> 5200 GGeeVV CMS data S [ra 1 |y| < 4S.7PS T+ DPS SPS HEF D/ DPS HEF s d 10-1 s1/ Data 1.50 0.5 1 D S1. 5 [rad] 2 2.5 3 Theory/ 0.510 0.5 1 1.5 2 2.5 3 D S [rad] Figure3: ComparisonoftheHEFpredictionstotheCMSdatafor∆S spectrum. Inadditionweshowthe ratioofthe(SPS+DPS)HEFresulttotheCMSdata. Acknowledgments TheworkofK.K.havebeensupportedbyNarodoweCentrumNaukiwithSonataBisgrant DEC-2013/10/E/ST2/00656. ThepaperisbasedoncommonpublicationwithRafalMaciula, MirkoSerino,AndreasvanHameren,AntoniSzczurek. References [1] K.Kutak,R.Maciula,M.Serino,A.SzczurekandA.vanHameren,JHEP1604(2016)175. [2] K.Kutak,R.Maciula,M.Serino,A.SzczurekandA.vanHameren,Phys.Rev.D94(2016)no.1, 014019. [3] Z.Bern,etal.,Phys.Rev.Lett.,109(2012),042001. [4] SimonBadger,BenediktBiedermann,PeterUwer,andValeryYundinPhys.Lett.,B718(2013),965. [5] S.Catani,M.CiafaloniandF.Hautmann,Phys.Lett.B242(1990)97. [6] J.C.CollinsandR.K.Ellis,Nucl.Phys.B360(1991)3.doi:10.1016/0550-3213(91)90288-9 [7] M.Deak,F.Hautmann,H.JungandK.Kutak,JHEP0909(2009)121 doi:10.1088/1126-6708/2009/09/121[arXiv:0908.0538[hep-ph]]. [8] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:0908.1870[hep-ph]. [9] S.Sapeta,Prog.Part.Nucl.Phys.89(2016)1doi:10.1016/j.ppnp.2016.02.002[arXiv:1511.09336 [hep-ph]]. [10] F.Abeetal.(CDFcollaboration)Phys.Rev.,D47(1993),4857. [11] P.Kotko,A.M.StastoandM.Strikman,arXiv:1608.00523[hep-ph]. [12] RafalMaciulaandAntoniSzczurek(2013),1301.4469. 4 Four-jet [13] MatteoRinaldi,SergioScopetta,MarcoTraini,andVicenteVento,JHEP,12(2014),028. [14] WojciechBroniowski,EnriqueRuizArriola,andKrzysztofGolec-Biernat,arXiv:1602.00254 [15] KrzysztofGolec-Biernat,EmiliaLewandowska,MirkoSerino,ZacharySnyder,andAnnaM. Stasto,Phys.Lett.,B750(2015),559. [16] K.Golec-BiernatandA.M.Stasto,arXiv:1611.02033[hep-ph]. [17] P.Kotko,etal.JHEP,09(2015),106. [18] A.vanHameren,arXiv:1611.00680[hep-ph]. [19] R.Angeles-Martinezetal.,ActaPhys.Polon.B46(2015)no.12,2501 doi:10.5506/APhysPolB.46.2501[arXiv:1507.05267[hep-ph]]. [20] SergueiChatrchyanetal.(CMS)Phys.Rev.,D89(2014)(9),092010. [21] RafalMaciulaandAntoniSzczurekPhys.Lett.,B749(2015),57. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.