ebook img

Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis PDF

2.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) D.Yan · T.Cecil · L.Gades · C.Jacobsen · T.Madden · A.Miceli Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis 6 1 0 thedateofreceiptandacceptanceshouldbeinsertedlater 2 n a Abstract Wepresentamethodusingprincipalcomponentanalysis(PCA)topro- J cessx-raypulseswithsevereshapevariationwheretraditionaloptimalfiltermeth- 7 odsfail.WedemonstratethatPCAisabletonoise-filterandextractenergyinfor- mationfromx-raypulsesdespitetheirdifferentshapes.Weapplythismethodtoa ] datasetfromanx-raythermalkineticinductancedetectorwhichhasseverepulse t e shapevariationarisingfromposition-dependentabsorption. d - Keywords Principal Component Analysis (PCA), Pulse Processing, Shape s Variance,Microcalorimeter n i . s c 1 Introduction i s y Acommonmethodofpulseprocessingforlowtemperaturemicrocalorimetersis h the optimal filter [1], where one cross-correlates a pulse with a pulse model (or p convolves a pulse with the time reverse of a known model). This method maxi- [ mizes the signal to noise under the conditions that the pulse shape and noise are 1 stationary.Howeverinrealdetectors,theseconditionsarenotalwayssatisfiedfor v avarietyofreasons. 1 Wedescribeheretheuseofprincipalcomponentanalysis(PCA)[2]asanon- 5 6 parametric analysis approach that requires no prior knowledge of the dataset for 1 thepulseprocessingoflowtemperaturedetectors[3].Inthiswork,wedrawupona 0 PCA-basedapproachusedinx-rayspectromicroscopyanalysis[4,5]toexaminea . simplesimulateddatasetconsistingofpulsesofdifferentdecaytimesanddifferent 1 0 pulseheights.Wethenapplyourapproachtoarealdatasetwithseverepulseshape 6 variation. 1 : DepartmentofAppliedPhysics,NorthwesternUniversity, v EvanstonIL60208,USA i AdvancedPhotonSource,ArgonneNationalLaboratory, X ArgonneIL60439,USA r E-mail:[email protected] a 2 2 PrincipalComponentAnalysis Whenx-raysareabsorbedinsuperconductingmicrocalorimeterdetectors,apulse is generated over some finite time before equilibrium is restored. Consider a set ofindividuallytriggereddetectorpulses(n=1,...N)whichareeachsampledin time (t =1,...T), yielding a data matrix D . Our goal is to represent these T×N data using a basis setC with S characteristic pulse shape factors, with each T×S individualpulsebeingrepresentedbyaweightingR ofmembersofthisbasis S×N set,or D =C ·R . (1) T×N T×S S×N IfwecanfindareducedsubsetwithS(cid:48) <T pulseshapefactorsthatthedatatell usmustbepresent,wecanrepresenteachpulsenotwithallT timepointsbutin terms of its S(cid:48) weighting factors. This gives a more compact representation of a pulseoverfewervariables,andoncethematrixCT×S(cid:48) hasbeendeterminedandits matrixinverted,wecanfindeachpulse’sweightingfactorsRS(cid:48)×N byasimpleand rapidly-calculatedmatrixmultiplication RS(cid:48)×N =CT−×1S(cid:48)·DT×N. (2) ThisanalysisismadesimplerifthematrixC isconstructedtohaveorthogo- T×S nalvectors(toenablematrixinversionusingsimpletransposition)sortedinorder ofdecreasingstatisticalsignificance(thusallowingthereducedbasissetCT×S(cid:48) to be easily separated from the full basis set C ). This is precisely what is ac- T×S complishedbyPCA[2].TocalculateC ,wefirstcalculatethetimecovariance T×S abouttheoriginof Z =D ·DT (3) T×T T×N N×T (therelationshipbetweenPCA,SVD,andcovariancematricesisdiscussedintext- booksonthetopic[2]aswellasinAppendixBof[4]).Becausethistimecovari- anceissymmetric,wecanrepresentitintermsofasetofeigenvectorsC and T×S eigenvalueweightingsΛ ,or S×S Z ·C =C ·Λ , (4) T×T T×S T×S S×S whereS=T attheoutsetofouranalysis.Mostnumericaleigenvalue-solvingrou- tines sort their output in terms of decreasing eigenvalue weightings. As a result, thefirsteigenvector(ortheeigenpulse)isessentiallyanaverageofthepulses.The second eigenvector gives the first correction to that average, the third eigenvec- torgivesthenextcorrectiontothefirsttwo,andsoon.Poorlycorrelatednoiseis exiled to higher order eigenvectors [6]. In this way, one can arrive at a reduced setCT×S(cid:48) ofeigenvectorswhichdescribeallofthesignificantcharacteristicpulse shapecomponents,andbecausethisisanorthonormalmatrixitsinverseisgiven bythetransposesothatEq.2canbecalculatedfromthereducedsetofeigenvec- torsas RS(cid:48)×N =CT−×1S(cid:48)·DT×N =CST(cid:48)×T·DT×N (5) WiththereducedsetofS(cid:48) eigenvectors,onecanalsogenerateacompressedand noise-filteredversionoftheoriginaldataas D(cid:48)T×N =CT×S(cid:48)·RS(cid:48)×N. (6) 3 Fig. 1 Illustration of eigenvector representation of some simulated pulses. At Left is shown severalindividualpulsesfromthesimulateddataset.Theyhaveacombinationoftwodifferent heightsandshapes,sotherearefourgroupsofthem.TheRightfigureshowstheeigenvalues (whicharefromΛS×S),andtheinsertshowsthefirstthreeeigenvectors.(Colorfigureonline) Fig.2 TheLeftfigureshowsfourPCAreconstructedpulses(Eq.6)forS(cid:48)=2.TheRightfigure representsthedistributionoftheelementsfromtheweightingmatrixRS(cid:48)×N forS(cid:48)=2fromthe PCAanalysisofthesimulateddata.(Colorfigureonline) InordertogainintuitiononhowPCAtreatspulsedata,wehavesimulateda datasetwhichcontainsexponentialpulseswithtwodecaytimes,twopulseheights and white noise as shown in the left subfigure of Fig. 1. As shown in the right subfigure,whendecomposedthisdatasetcontainstwoprimaryeigenvectors.The third (and higher) eigenvector contains no shape information and corresponds to noiseinthedataset.Thus,wecanrebuildthedatasetasD(cid:48)T×N=CT×S(cid:48)=2·RS(cid:48)=2×N. AsshownintheleftsubfigureinFig.2,noiseisgreatlyfilteredyetthepulseshape andheightfeaturesremain.TherightsubfigureofFig.2showsthedistributionof elementsfromtheweightingmatrixRS(cid:48)=2×N,wherecomponents1and2respec- tivelyaretheweightingfactorsofthe1st and2nd eigenvectors. 4 Fig.3 FigureontheTopLeftshowsseveralindividualpulsesfromtheTKIDdevice.Aclear shapedifferencecouldbeseenatthebeginning.Aftersomeequilibriumtimethepulsesgoto twobranches;theloweroneisMnKα,andtheupperoneisMnKβ.TheFigureontheTop RightisthefirstfifteeneigenvaluesandtheBottomLeftthefirstsixeigenvectors.TheBottom Rightfigureshowstworawpulses(black)incomparisonwithPCAreconstructedpulses(Eq.6) forS(cid:48)=1,2,3(red)(Colorfigureonline). For pulses with the same shape and height, their weighting factors are the same,soaplotofindividualpulsesasdotsattheirparticulareigenvectorweight- ings shows four clusters in the right subfigure of Fig. 2. For pulses with same shapeanddifferentheight,theyhavethesameratioofcomponent1tocomponent 2.Forpulseswithdifferentshapebutthesameheight,thelinearcombinationof theirweightingsistheheight,sotheirdatapointsareonthesamelinewithlines thatcorrespondtodifferentheightsparalleltoeachother. 3 AnalysisofTKIDDataUsingPCA We now apply the PCA method to a real dataset from an x-ray thermal kinetic inductancedetector(TKID).WhileothergroupshavereportedTKIDswith75eV resolution at 6 keV [7], we worked here with a TKID [8, 9] from which pulse shapes were strongly dependent on the location on the sensor at which an x-ray 5 Fig.4 TheLeftfigureshowsthedistributionofelementsintheweightingmatrixRS(cid:48)=2×N from thePCAanalysisoftheTKIDdata.TheUpperinsertshowsapileupeventandtheLowerinsert showsalowenergyevent,bothwithapositionseparatefromthemaincluster.TheRightfigure isthehistogramofthepulseset. wasabsorbed(seeFig.3TopLeft).About30µsafterthestartofapulse,thepulse shape does not vary and the amplitude is proportional to the energy, the Mn Kα andMnKβ linesoftheFe-55sourcebecomeapparent.Insuchadataset,atradi- tionalmatchedoroptimalfiltergivesnoenergyinformation,sincethepulseshapes aresodifferentthatenergycouldnotbesimplyextractedfrompulseheightorarea. ThishasmotivatedustoconsideraPCAanalysiswhichmakesnoassumptionsof thedataset. Following the PCA analysis presented in Sec. 2, the eigenvalues and eigen- vectors are calculated and shown in Fig. 3. The first two eigenvalues are most significant,buteigenvalues3–9encodesomesubtlevariationsinthedata.Inpar- ticular, the fluctuations near a time of 1500 µs are related to the jitter in the rise time;thesecomponentsarelikelyhighlycorrelatedwitharrivaltime.Avariantof PCA analysis (using singular variant decomposition, or SVD) recently has been studiedforthedetectionofnearly-coincidentpulses[10].Whilethecomponents beyond the first two may show some correlation with photon energy, we restrict the analysis in this paper to the first two components for simplicity. We can see fromthebottomrightsubfigureinFig.3thatthereisqualitativelynolargediffer- encebetweenS(cid:48)=2andS(cid:48)=3,thoughrigorousandrobustselectionmetricsfor S(cid:48) needtobedevelopedinthefuture. In order to extract energy information, we examined the weighting matrix RS(cid:48)×N withS(cid:48)=2whichisa2DscatterplotshownintheleftsubfigureofFig4. We see two clusters which we associate with the Mn Kα (black) and Mn Kβ (blue) lines; black points are pulses in the lower Kα branch as in the Top Left figure of Fig. 3, and blue ones (those who are not outliers) are in the higher Kβ branch. These clusters can be automatically detected and separated [2], and we havealreadyusedtheseautomatedapproachesinothercontexts[4,5].Byfittinga line(red)totheMnKα cluster,wecangenerateanaxiswhichwasusedtorotate the 2D scatter plot of the weighting matrix so that the clusters are vertical [11]. Theprojectionontothex-axisisusedtogeneratetheenergyhistogramintheright subfigureinFig.4.Thus,theenergycanbecorrelatedtoalinearcombinationof thefirsttwoPCAcomponents. 6 Fig.5 TheLeftfigurerepresentstheentiredataset’sweightingmatrixdatadistribution,which is calculated with a training eigenvector set from 200 pulses. The Right figure is the energy histogramgeneratedafterrotatingthisweightingmatrix. Weshouldnotethatthisdatasetincludespileup(i.e.,morethanonepulseina singletimerecordT)andlowenergyevents.Theseevents,shownintheinsertion in the left subfigure of Fig 4, result in PCA weights that are vastly different, or points isolated from the main clusters. By using S(cid:48) >2 components, pileups can be further distinguished from low energy events. This suggests that PCA can be effectiveforpileuprejection. One disadvantage of PCA is its time-consuming eigenvector calculation. A solutionistouseasmallersetofpulsesasatrainingset.Asanexample,weused thefirst200pulsestoperformthePCAdecompositionandobtainaneigenvector setCtraining.SelectingS(cid:48)=2,andusingEq.2,weobtainedtheweightingmatrix T×S(cid:48) fortheremainingN=3088pulses,whichisshownintheleftsubfigureofFig.5. ComparedtotheleftsubfigureofFig4,despiteaninverseofthefirstcomponent the training data agrees well with what we obtain from direct PCA composition of the entire dataset. The energy histogram also shows very little change. With thetrainedsetofeigenvectors,thePCAreconstructionofthedatasimplifiedtoa matrixmultiplication.Thismethodcouldenablefast,real-timepulseprocessing. More work is needed to determine a sufficient number of pulses for the training set. 4 Conclusions Wehaveintroducedanon-parametricmethodforTKIDpulseprocessingbasedon PCA,andhaveshownthatitisbeneficialfordatasetswithpulseshapevariation. We have shown that PCA reduces data noise by the selection of a few number of components, and provides energy information by converting the data into a lowerdimensionbasissystem.Moreover,italsoprovidesanewmethodtoidentify pileupeventsandforfast,real-timepulseprocessing. 7 Acknowledgements UseoftheCenterforNanoscaleMaterialswassupportedbytheU.S.De- partment of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.WorkatArgonneNationalLaboratorywassupportedbytheU.S.De- partment of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.DevicesinthispaperwerefabricatedatCNM;wegratefullyacknowl- edgeassistancefromRaluDivan,LeoOcola,DaveCzaplewskiandSuzanneMilleratCNM. WethankMirnaLeroticandRachelMakforusefuldiscussiononPCA.Finally,wethankthe reviewersfortheirusefulinsights. References 1. A.E.Szymkowiak,R.L.Kelley,S.H.Moseley,andC.K.Stahle. Journalof LowTemperaturePhysics93,3,281–285(1993). 2. E.R.Malinowski. Factoranalysisinchemistry. JohnH.Wiley&Sons,New York,3nd edition(2002). 3. S.E.Busch,J.S.Adams,S.R.Bandler,J.A.Chervenak,M.E.Eckart,F.M. Finkbeiner,D.J.Fixsen,R.L.Kelley,C.A.Kilbourne,J.P.Porst,F.S.Porter, J. E. Sadleir, and S. J. Smith. Journal of Low Temperature Physics. This SpecialIssue(2015). 4. M.Lerotic,C.Jacobsen,T.Scha¨fer,andS.Vogt. Ultramicroscopy100,1-2, 35–57(2004). 5. M. Lerotic, R. Mak, S. Wirick, F. Meirer, and C. Jacobsen. Journal of Syn- chrotronRadiation21,5,1206–1212(2014). 6. Wenotethatourcovariance-basedapproachmakesnoreferencetothespec- tralcharacteristicsofthenoise;weonlyaskifitiscorrelatedwiththesignal, ornot.Itmaybethatfurtherimprovementsinouranalysiscouldbeobtained by separating white noise from non-white noise, as suggested by an anony- mousreviewer;wehopetoexplorethisinfuturework. 7. G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B.Bumble. AppliedPhysicsLetters106,25,251103(2015). 8. O.Quaranta,T.W.Cecil,L.Gades,B.Mazin,andA.Miceli.Superconductor ScienceandTechnology26,10,105021(2013). 9. A.Miceli,T.W.Cecil,L.Gades,andO.Quaranta. JournalofLowTempera- turePhysics176,3-4,497–503(2014). 10. B.Alpert,E.Ferri,D.Bennett,M.Faverzani,J.Fowler,A.Giachero,J.Hays- Wehle,M.Maino,A.Nucciotti,A.Puiu,andJ.Ullom. JournalofLowTem- peraturePhysics.ThisSpecialIssue(2015). 11. Usingthemaximumpulseheightasaproxyforphotoninteractionposition, thedata’snewdistributionalongthey-axiscorrelateswiththephotoninterac- tionposition,andtheprojectionontothex-axis(i.e.,energy)hasaveryweak dependenceonposition.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.