UUnniivveerrssiittyy ooff WWoolllloonnggoonngg RReesseeaarrcchh OOnnlliinnee University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1954-2016 2015 PPrroocceessss ppllaannnniinngg ffoorr rroobboottiicc wwiirree AARRCC aaddddiittiivvee mmaannuuffaaccttuurriinngg Donghong Ding University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses UUnniivveerrssiittyy ooff WWoolllloonnggoonngg CCooppyyrriigghhtt WWaarrnniinngg You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. UUnnlleessss ootthheerrwwiissee iinnddiiccaatteedd,, tthhee vviieewwss eexxpprreesssseedd iinn tthhiiss tthheessiiss aarree tthhoossee ooff tthhee aauutthhoorr aanndd ddoo nnoott nneecceessssaarriillyy rreepprreesseenntt tthhee vviieewwss ooff tthhee UUnniivveerrssiittyy ooff WWoolllloonnggoonngg.. RReeccoommmmeennddeedd CCiittaattiioonn Ding, Donghong, Process planning for robotic wire ARC additive manufacturing, Doctor of Philosophy thesis, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2015. https://ro.uow.edu.au/theses/4613 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] PROCESS PLANNING FOR ROBOTIC WIRE ARC ADDITIVE MANUFACTURING A dissertation submitted to the University of Wollongong in partial fulfilment of the requirements for the degree of Doctor of Philosophy September 2015 By Donghong Ding School of Mechanical, Materials and Mechatronic Engineering University of Wollongong, Australia 1 Abstract Robotic Wire Arc Additive Manufacturing (WAAM) refers to a class of additive manufacturing processes that builds parts from 3D CAD models by joining materials layer- upon-layer, as opposed to conventional subtractive manufacturing technologies. Over the past half century, a significant amount of work has been done to develop the capability to produce parts from weld deposits through the additive approach. However, a fully automated CAD-to- part additive manufacturing (AM) system that incorporates an arc welding process has yet to be developed. The missing link is an automated process planning methodology that can generate robotic welding paths directly from CAD models based on various process models. The development of such a highly integrated process planning method for WAAM is the focus of this thesis. The major steps in process planning for robotic WAAM includes generation of 2.5D layers, generation of deposition paths for these layers, the determination of welding parameters (e.g. wire-feed rate, travel speed, and stick-out) associated with the deposition paths, and an optional post-process machining. A more detailed explanation for each of these steps is provided as follows. In WAAM, the CAD model is sliced into a set of 2.5D layers along the build direction. Unlike existing slicing methods, which divide models into parallel slices of either equally or varying thickness, the newly-developed multi-direction slicing algorithm decomposes CAD models into slices in multiple directions based on geometric evaluations. This allows direct deposition of complex models without the need to introduce additional support structures. In addition, in multi-direction deposition, the accuracy of the deposited part is increased through minimising the “stair-stepping” effect. Deposition paths are subsequently generated for the 2D cross-section of the obtained 2.5D layers. Path generation for processes that have fine, statistically distributed particles in powder-based AM system are somewhat independent of geometric complexity. However, AM systems based on arc-wire welding produce much larger deposits than powder-based systems, so the deposition paths are significantly influenced by geometric complexity and the material selected. Innovative MAT-based (medial axis transformation) path planning algorithms are proposed to generate void-free deposition paths irrespective of the complexity of the geometry. I Welding parameters associated with the generated deposition paths are selected to produce weld deposits with the desired width and height to produce the necessary layer thickness together with complete material infill between paths. Generally, welding variables such as wire-feed rate and travel speed are manually set by welding experts depending on the deposition process and the material selected. In this study, artificial neural network (ANN) single bead models are established for the gas metal arc welding (GMAW) process of mild steel and aluminium alloy materials, respectively. A multi-bead overlapping model is also developed to determine the appropriate overlapping distances (step-over distances) between the paths in order to obtain a smooth multi-pass surface. Both the ANN model and multi-bead overlapping model are integrated into the process planning methodology allowing the automatic selection of optimum welding parameters corresponding to the generated deposition paths. As a result, near-net shapes are fabricated using the generated deposition paths and welding parameters. The shapes are then machined to produce the finished parts with the required dimensional tolerances through a series of post-process robotic machining operations. The absence of re-fixturing problems and tool accessibility problems helps in fully automating the generation of robotic machining paths. Several parts were built automatically using this process planning and the results are discussed. II Acknowledgements I take this opportunity to express my sincere appreciation to my principal supervisor Dr. Zengxi Pan, and associate supervisors Prof. Huijun Li and Dr. Dominic Cuiuri, for their support and guidance in pursuing this research. They kept me free of financial worries and provided the much needed assistance in my program over the last three years. The excellent research atmosphere that provided in our group was very helpful for the successful completion of this work. Many thanks to Prof. Weihua Li, and A/Prof. Shu-Qing Yang for their guidance during my early PhD life (12.2011~6.2013). Weihua’s encouragement allowed me to feel more confident to start my new research topic. I would like to thank Mr. Nathan Larkin for his support during laboratory experiment. I would also like to thank the other members of our group, Dr. Stephen Van Duin and Prof. John Norrish for their valuable comments and useful suggestions. A special thanks to my colleague Andrew Short for his supporting in experiments. Also I am grateful to my other colleagues Chen Shen, Alexander Visser, and Yan Ma for exciting and useful discussions. Finally, I wish to express my special thanks to all my friends, to my parents, to my wife, and to my lovely daughter, for their support and encouragement during this work. III Table of Contents Abstract .................................................................................................................................................. I Acknowledgements ............................................................................................................................ III List of Figures .................................................................................................................................... VII Chapter 1 ............................................................................................................................................... 1 Introduction ........................................................................................................................................... 1 1.1 Motivation .................................................................................................................................... 1 1.2 Literature review ........................................................................................................................ 2 1.2.1 AM vs. CNC Machining ...................................................................................................... 2 1.2.2 Powder-based vs. wire-feed AM process ............................................................................ 3 1.2.3 Wire-feed AM processes ...................................................................................................... 6 1.2.4 Wire arc additive manufacturing ....................................................................................... 8 1.3 Research gaps ............................................................................................................................ 14 1.4 Present work .............................................................................................................................. 15 1.5 Thesis outline ............................................................................................................................. 17 Chapter 2 ............................................................................................................................................. 19 Process Planning Overview ................................................................................................................ 19 2.1 The WAAM process .................................................................................................................. 19 2.2 Process planning ........................................................................................................................ 20 2.3 User interface ............................................................................................................................ 22 2.4 Summary .................................................................................................................................... 23 Chapter 3 ............................................................................................................................................. 25 Bead Modelling.................................................................................................................................... 25 3.1 Single bead geometry ................................................................................................................ 25 3.1.1 Single bead empirical models ............................................................................................ 26 3.1.2 Experimental set-up ........................................................................................................... 26 3.1.3 Curve fitting results ........................................................................................................... 28 3.2 Multi-bead overlapping model for mild steel ......................................................................... 30 3.2.1 Principle of the tangent overlapping model (TOM) ........................................................ 31 3.2.2 Overlapping of two beads .................................................................................................. 33 3.2.3 Multi-bead overlapping ..................................................................................................... 35 3.2.4 Experimental verification for the overlapping model ..................................................... 35 3.3 Artificial neural network bead models .................................................................................... 41 IV 3.3.1 Forward computing ........................................................................................................... 41 3.3.2 Error backpropagation learning ...................................................................................... 42 3.3.3 Training of neural network ............................................................................................... 44 3.3.4 Bead geometry measurement ............................................................................................ 45 3.3.5 Testing of neural network ................................................................................................. 46 3.4 Summary .................................................................................................................................... 47 Chapter 4 ............................................................................................................................................. 48 3D CAD Slicing ................................................................................................................................... 48 4.1 Uni-direction slicing .................................................................................................................. 48 4.1.1 The tolerant uni-direction slicing algorithm.................................................................... 49 4.1.2 Implementation .................................................................................................................. 52 4.2 Multi-direction slicing .............................................................................................................. 54 4.2.1 Related works of multi-direction slicing .......................................................................... 55 4.2.2 Strategy overview ............................................................................................................... 57 4.2.3 Multi-direction slicing algorithms .................................................................................... 59 4.2.3 Implementation and results ............................................................................................... 71 4.3 Summary .................................................................................................................................... 73 Chapter 5 ............................................................................................................................................. 75 2D Deposition Path Planning ............................................................................................................. 75 5.1 Existing path planning methods .............................................................................................. 75 5.2 Path planning challenges in WAAM ....................................................................................... 78 5.3 MAT-based path planning ....................................................................................................... 83 5.3.1 Overview of MAT-based path ........................................................................................... 83 5.3.2 Definition and computation of the MAT .......................................................................... 86 5.3.3 MAT-based path generation ............................................................................................. 88 5.3.4 Discussions .......................................................................................................................... 95 5.4 Adaptive MAT path planning .................................................................................................. 99 5.4.1 Essential of adaptive MAT path ....................................................................................... 99 5.4.2 Algorithm for adaptive MAT path generation .............................................................. 101 5.4.3 Validation of the proposed algorithm ............................................................................ 106 5.4.4 Discussions ........................................................................................................................ 108 5.5 Summary .................................................................................................................................. 109 Chapter 6 ........................................................................................................................................... 111 Post-process Machining .................................................................................................................... 111 V 6.1 Top region machining ............................................................................................................. 111 6.2 Side region machining ............................................................................................................ 112 6.3 Base region machining ............................................................................................................ 113 6.4 Summary .................................................................................................................................. 114 Chapter 7 ........................................................................................................................................... 115 Applications ....................................................................................................................................... 115 7.1 Mild steel components with complex geometries ................................................................. 115 7.2 Aluminium thin-walled structure with finished quality ...................................................... 118 7.3 Adaptive MAT paths with minimum post milling ............................................................... 122 7.3.1 ANN model of mild steel .................................................................................................. 122 7.3.2 Determination of 2D path planning variables ............................................................... 124 7.3.3 Determination of welding process parameters .............................................................. 126 7.3.4 Case studies ....................................................................................................................... 127 7.3.5 Discussions ........................................................................................................................ 131 7.4 Summary .................................................................................................................................. 132 Chapter 8 ........................................................................................................................................... 134 Summary and Future Work ............................................................................................................ 134 8.1 Contributions........................................................................................................................... 134 8.2 Future work ............................................................................................................................. 136 Appendix ............................................................................................................................................ 139 A. Continuous path generation algorithm .................................................................................. 139 B. Smallest enclosing crowns ....................................................................................................... 147 References .......................................................................................................................................... 150 Selected Publications ........................................................................................................................ 157 VI
Description: