Process Intensification for Sustainable Energy Conversion Process Intensification for Sustainable Energy Conversion Edited by FAUSTO GALLUCCI and MARTIN VAN SINT ANNALAND Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands Thiseditionfirstpublished2015 ©2015JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreuse thecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,Designs andPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designs andPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook, theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookand specificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessional shouldbesought LibraryofCongressCataloging-in-PublicationData Processintensificationforsustainableenergyconversion/editedbyFaustoGallucci,ChemicalProcessIntensification, DepartmentofChemicalEngineeringandChemistry,EindhovenUniversityofTechnology,Eindhoven,TheNetherlands andMartinvanSintAnnaland. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-118-44935-6(cloth) 1. Chemicalprocesses.2. Renewableenergysources.3. Greenchemistry. I. Gallucci,Fausto. II. SintAnnaland, Martinvan. TP155.7.P7562015 660′.28–dc23 2015009730 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:9781118449356 FrontCoverimage:Membraneassistedfluidizedbedchemicalloopingreforming.Theauthorswouldliketothank JorisGarenfeldforthe3Drepresentationofthereactor. Typesetin10/12ptTimesLTStdbyLaserwordsPrivateLimited,Chennai,India 1 2015 Contents Preface xi ListofContributors xiii 1. Introduction 1 FaustoGallucciandMartinvanSintAnnaland References 6 2. CryogenicCO Capture 7 2 M.vanSintAnnaland,M.J.TuinierandF.Gallucci 2.1 Introduction–CCSandCryogenicSystems 7 2.1.1 CarbonCaptureandStorage 8 2.1.2 Cryogenicseparation 10 2.2 CryogenicPackedBedProcessConcept 11 2.2.1 CaptureStep 11 2.2.2 CO RecoveryStep 12 2 2.2.3 H ORecoveryandCoolingStep 13 2 2.3 DetailedNumericalModel 13 2.3.1 ModelDescription 13 2.3.2 SimulationResults 15 2.3.3 SimplifiedModel:SharpFrontApproach 16 2.3.4 ModelDescription 16 2.3.5 ProcessAnalysis 22 2.3.6 InitialBedTemperature 24 2.3.7 CO InletConcentration 24 2 2.3.8 InletTemperature 25 2.3.9 BedProperties 25 2.4 Small-ScaleDemonstration(ProofofPrinciple) 25 2.4.1 ResultsoftheProofofPrinciple 26 2.5 ExperimentalDemonstrationoftheNovelProcessConceptina Pilot-ScaleSet-Up 31 2.5.1 ExperimentalProcedure 32 2.5.2 ExperimentalResults 33 vi Contents 2.5.3 SimulationsfortheProofofConcept 36 2.5.4 RadialTemperatureProfiles 36 2.5.5 InfluenceoftheWall 38 2.6 Techno-EconomicEvaluation 39 2.6.1 ProcessEvaluation 40 2.6.2 ParametricStudy 41 2.6.3 ComparisonwithAbsorptionandMembraneTechnology 45 2.7 Conclusions 49 2.8 NotefortheReader 49 Listofsymbols 50 Greekletters 50 Subscripts 51 References 51 3. NovelPre-CombustionPowerProduction:MembraneReactors 53 F.GallucciandM.vanSintAnnaland 3.1 Introduction 53 3.2 TheMembraneReactorConcept 55 3.3 TypesofReactors 57 3.3.1 PackedBedMembraneReactors 58 3.3.2 FluidizedBedMembraneReactors 65 3.3.3 MembraneMicro-Reactors 72 3.4 Conclusions 74 3.5 Noteforthereader 75 References 75 4. OxyFuelCombustionPowerProductionUsingHighTemperatureO 2 Membranes 81 VesnaMiddelkoopandBartMichielsen 4.1 Introduction 81 4.2 MIECPerovskitesasOxygenSeparationMembraneMaterialsforthe Oxy-fuelCombustionPowerProduction 83 4.3 MIECMembraneFabrication 85 4.4 High-temperatureceramicoxygenseparationmembranesystemon laboratoryscale 87 4.4.1 OxygenpermeationmeasurementsandsealingdenseMIEC ceramicmembranes 87 4.4.2 Ba Sr Co Fe O andLa Sr Co Fe O x 1−x 1−x y 3−𝛿 x 1−x 1−y y 3−𝛿 Membranes 89 4.4.3 ChemicalStabilityofPerovskiteMembranesUnderFlue-Gas Conditions 96 4.4.4 CO -TolerantMIECMembranes 99 2 4.5 IntegrationofHigh-TemperatureO TransportMembranesinto 2 Oxy-FuelProcess:RealWorldandEconomicFeasibility 103 4.5.1 Four-EndandThree-EndIntegrationModes 103 Contents vii 4.5.2 Pilot-ScaleMembraneSystems 104 4.5.3 FurtherScale-UpofO ProductionSystems 106 2 References 109 5. ChemicalLoopingCombustionforPowerProduction 117 V.SpallinaH.P.Hamers,F.GallucciandM.vanSintAnnaland 5.1 Introduction 117 5.2 Oxygencarriers 120 5.2.1 Nickel-basedOCs 122 5.2.2 Iron-basedOCs 122 5.2.3 Copper-basedOCs 122 5.2.4 Manganese-basedOCs 123 5.2.5 OtherOxygenCarriers 123 5.2.6 SulfurTolerance 123 5.3 ReactorConcepts 124 5.3.1 InterconnectedFluidizedBedReactors 124 5.3.2 PackedBedReactors 132 5.3.3 RotatingReactor 143 5.4 TheIntegrationofCLCReactorinPowerPlant 144 5.4.1 NaturalGasPowerPlantwithCLC 144 5.4.2 Coal-BasedPowerPlantwithCLC 148 5.4.3 ComparisonbetweenCLCinpackedbedsandcirculated fluidizedbeds 162 5.5 Conclusions 164 Nomenclature 167 Subscripts 168 References 168 6. Sorption-EnhancedFuelConversion 175 G.Manzolini,D.JansenandA.D.Wright 6.1 Introduction 175 6.2 DevelopmentinSorption-EnhancedProcesses 176 6.2.1 EnhancedSteamMethaneReformer 177 6.2.2 SEWGS 177 6.3 SorbentDevelopment 180 6.3.1 SorbentforSorption-EnhancedReforming 180 6.3.2 SorbentforEnhancedWater-GasShift 182 6.4 ProcessDescriptions 188 6.4.1 FluidisedBeds 189 6.4.2 FixedBeds 190 6.4.3 DesignOptimisationofFixedBedProcesses 195 6.5 Sorption-EnhancedReactionProcessesinPowerPlant forCO Capture 196 2 6.5.1 SER 196 6.5.2 SEWGScase 199 viii Contents 6.6 Conclusions 203 Nomenclature 204 References 204 7. Pd-BasedMembranesinHydrogenProductionforFuelcells 209 RuneBredesen,ThijsA.Peters,TimBoeltkenandRolandDittmeyer 7.1 Introduction 209 7.2 CharacteristicsofFuelCellsandApplications 211 7.3 CentralizedandDistributedHydrogenProductionforEnergy Applications 213 7.4 Pd-BasedMembranes 216 7.5 HydrogenProductionUsingPd-BasedMembranes 216 7.5.1 HydrogenfromNaturalGasandCoal 217 7.5.2 HydrogenfromEthanol 219 7.5.3 HydrogenfromMethanol 220 7.5.4 HydrogenfromOtherHydrocarbonSources 221 7.5.5 HydrogenfromAmmonia 221 7.6 ProcessIntensificationbyMicrostructuredMembraneReactors 221 7.7 IntegrationofPd-BasedMembranesandFuelCells 229 7.8 FinalRemarks 231 Acknowledgements 231 References 232 8. FromBiomasstoSNG 243 LucaDiFeliceandFrancescaMicheli 8.1 Introduction 243 8.2 CurrentStatusofBio-SNGProductionandFacilitiesinEurope 244 8.3 Bio-SNGProcessConfiguration 245 8.3.1 TheGasificationStep 247 8.3.2 GasCleaning 248 8.3.3 TheSynthesisStep 250 8.4 CatalyticSystems 251 8.5 TheCaseStudy 253 8.5.1 TheFeedingComposition 254 8.5.2 HeatExchangers 256 8.5.3 ScrubberTarRemoval 257 8.5.4 AmmoniaAbsorber 258 8.5.5 HClandH SRemoval 259 2 8.5.6 CompressionSection 259 8.5.7 SeparationSection:H OandCO Removal 259 2 2 8.5.8 MethanationSectionCase1:AdiabaticFixedBedwith IntermediateCooling 260 8.5.9 MethanationSectionCase2:IsothermalFluidizedBed 262 8.6 ChemicalEfficiency 263 8.7 Conclusions 263 References 264