ebook img

Proceedings of the 2nd Workshop on Structured Prediction for NLP PDF

75 Pages·2017·4.9 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proceedings of the 2nd Workshop on Structured Prediction for NLP

EMNLP 2017 The Conference on Empirical Methods in Natural Language Processing Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing September 9-11, 2017 Copenhagen, Denmark (cid:13)c 2017TheAssociationforComputationalLinguistics OrdercopiesofthisandotherACLproceedingsfrom: AssociationforComputationalLinguistics(ACL) 209N.EighthStreet Stroudsburg,PA18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN978-1-945626-93-7 ii Introduction WelcometotheSecondworkshoponstructuredpredictionforNLP! Many prediction tasks in NLP involve assigning values to mutually dependent variables. For example, when designing a model to automatically perform linguistic analysis of a sentence or a document (e.g., parsing, semantic role labeling, or discourse analysis), it is crucial to model the correlations betweenlabels. ManyotherNLPtasks,suchasmachinetranslation,textualentailment,andinformation extraction,canbealsomodeledasstructuredpredictionproblems. Inordertotacklesuchproblems,variousstructuredpredictionapproacheshavebeenproposed,andtheir effectiveness has been demonstrated. Studying structured prediction is interesting from both NLP and machine learning (ML) perspectives. From the NLP perspective, syntax and semantics of the natural language are clearly structured and advances in this area will enable researchers to understand the linguisticstructureofdata. FromtheMLperspective,alargeamountofavailabletextdataandcomplex linguistic structures bring challenges to the learning community. Designing expressive yet tractable modelsandstudyingefficientlearningandinferencealgorithmsbecomeimportantissues. Recently, there has been significant interest in non-standard structured prediction approaches that take advantage of non-linearity, latent components, and/or approximate inference in both the NLP and ML communities. Researchers have also been discussing the intersection between deep learning and structuredpredictionthroughtheDeepStructurereadinggroup. Thisworkshopintendstobringtogether NLPandMLresearchersworkingondiverseaspectsofstructuredpredictionandexposetheparticipants torecentprogressinthisarea. This year we have eight papers covering various aspects of structured prediction, including neural networks, deep structured prediction, and imitation learning. We also invited four fantastic speakers. Wehopeyouallenjoytheprogram! Finally, we would like to thank all programming committee members, speakers, and authors. We are lookingforwardtoseeingyouinCopenhagen. iii Organizers: Kai-WeiChang,UCLA Ming-WeiChang,MicrosoftResearch AlexanderRush,HarvardUniversity VivekSrikumar,UniversityofUtah ProgramCommittee: AmirGloberson,TelAvivUniversity(Israel) AlexanderSchwing(UIUC) IvanTitov(UniversityofAmsterdam) JanardhanRaoDoppa(WSU) JasonEisner(JHU) KarlStratos(TTIC) KevinGimpel(TTIC) LukeZettlemoyer(UW) MattGormley(CMU) MohitBansal(UNC) MoYu(IBM) NoahSmith(UW) ParisaKordjamshidi(TulaneUniversity) RaquelUrtasun(UniversityofToronto) RoiReichart(Technion) OferMeshi(Google) ScottYih(Microsoft) ShayCohen(UniversityofEdinburgh) ShuohangWang(SingaporeManagementUniversity) WaleedAmmar(AI2) YoavArtzi(Cornell) v Table of Contents DependencyParsingwithDilatedIteratedGraphCNNs EmmaStrubellandAndrewMcCallum .................................................... 1 EntityIdentificationasMultitasking KarlStratos.............................................................................7 TowardsNeuralMachineTranslationwithLatentTreeAttention JamesBradburyandRichardSocher......................................................12 StructuredPredictionviaLearningtoSearchunderBanditFeedback AmrSharafandHalDauméIII...........................................................17 SyntaxAwareLSTMmodelforSemanticRoleLabeling FengQian,LeiSha,BaobaoChang,LuChenLiuandMingZhang...........................27 SpatialLanguageUnderstandingwithMultimodalGraphsusingDeclarativeLearningbasedProgram- ming ParisaKordjamshidi,TaherRahgooyandUmarManzoor...................................33 Boosting Information Extraction Systems with Character-level Neural Networks and Free Noisy Super- vision PhilippMeerkampandZhengyiZhou.....................................................44 PiecewiseLatentVariablesforNeuralVariationalTextProcessing IulianVladSerban,AlexanderOrorbiaII,JoellePineauandAaronCourville.................52 vii Conference Program Thursday,September7,2016 9:00–10:30 Section1 9:00–9:15 Welcome Organizers 9:15–10:00 InvitedTalk 10:00–10:30 DependencyParsingwithDilatedIteratedGraphCNNs EmmaStrubellandAndrewMcCallum 10:30–11:00 CoffeeBreak 11:00–12:15 Section2 11:00–11:45 InvitedTalk 11:45–12:15 PosterMadness 12:15–14:00 Lunch ix Thursday,September7,2016(continued) 14:00–15:30 Section3 14:00–14:45 PosterSession EntityIdentificationasMultitasking KarlStratos TowardsNeuralMachineTranslationwithLatentTreeAttention JamesBradburyandRichardSocher StructuredPredictionviaLearningtoSearchunderBanditFeedback AmrSharafandHalDauméIII SyntaxAwareLSTMmodelforSemanticRoleLabeling FengQian,LeiSha,BaobaoChang,LuChenLiuandMingZhang Spatial Language Understanding with Multimodal Graphs using Declarative LearningbasedProgramming ParisaKordjamshidi,TaherRahgooyandUmarManzoor Boosting Information Extraction Systems with Character-level Neural Networks andFreeNoisySupervision PhilippMeerkampandZhengyiZhou 14:45–15:30 InvitedTalk 15:30–16:00 CoffeeBreak x

Description:
cс2017 The Association for Computational Linguistics. Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL). 209 N. Eighth Street. Stroudsburg, PA 18360. USA. Tel: +1-570-476-8006. Fax: +1-570-476-0860 [email protected]. ISBN 978-1-945626-93-7.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.