ebook img

PROBXHAIL: An Abductive-Inductive Algorithm for Probabilistic Inductive Logic Programming PDF

83 Pages·2016·0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PROBXHAIL: An Abductive-Inductive Algorithm for Probabilistic Inductive Logic Programming

IMPERIAL COLLEGE LONDON DEPARTMENT OF COMPUTING PROBXHAIL: An Abductive-Inductive Algorithm for Probabilistic Inductive Logic Programming Author: Supervision: Stanislav DRAGIEV Dr. Alessandra RUSSO Dr. Krysia BRODA Mark LAW June13,2016 iii Abstract This project describes the development of a machine learning model that integrates Bayesian statistics in logic-based learning. This results in a modelthatiseasytocomprehend,abenefitoffirst-orderlogictheories,and isabletoexpressuncertaintylikestatisticalmodels. Wedothisbydefining aprogramminglanguageforprobabilisticlogicprogramming,andthende- velopingalgorithmsthatlearnthestatisticalparametersoftheprogramand the structure of its first-order logic theory. The probabilistic programming languagehascertaininterestingpropertieswhencomparedtostate-of-the- art probabilistic logic programs, including the use of stable set semantics and Bayesian priors. In addition, the algorithm introduces the concept of abductive-inductivelearninginprobabilisticinductivelogicprogramming (PILP),i.e. learningfirst-ordertheoriesbycombiningabductionandinduc- tion. First,wedefineannotatedliteralprograms,atypeofprobabilisticlogic programinwhicheveryliteralisannotatedwithaparameterforaBernoulli or Beta distribution. The associated probabilistic model, which is defined byagenerativestoryforanormallogicprogram,usesindependentBernoulli trials to determine whether each literal should be included in the theory. We outline parameter learning algorithms for the program based on sta- tistical abduction. We define PROBXHAIL (PROBabilistic eXtended Hy- brid Abductive-Inductive Learning), an inductive-abductive algorithm for structurallearningthatisageneralizationofXHAIL[26]. Thepropertiesof annotated literal programs and the corresponding machine learning algo- rithmsareevaluatedinlightofstate-of-the-artprobabilisticlogicprogram- minglanguages. v Acknowledgements IamverygratefulforthetimethatDr. AlessandraRussoandDr. Krysia BrodadedicatedtomyprojectandfortheguidanceIwasgiventotakethe project in an original direction. Mark Law also provided me with a lot of insight on various topics in logic programming, and his knowledge of howtooptimizeAnswerSetProgramswasparticularlyhelpfultome. Iam alsoverygratefulforCalinRaresTurliuc’shelpinunderstandingstatistical abductionandprobabilisticlogicprogramming. Last,butnotleast,Iwould liketothankmyparentsfortheirsupportduringmystudies. vii Contents Abstract iii Acknowledgements v 1 Introduction 1 2 Background 5 2.1 ClauseTheorySemantics . . . . . . . . . . . . . . . . . . . . . 5 2.2 BDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 InductiveLogicProgramming . . . . . . . . . . . . . . . . . . 7 2.3.1 InverseentailmentandBottomGeneralization . . . . 8 2.3.2 (Extended)HybridAbductiveInductiveLearning . . 9 2.4 ProbabilityTheory . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 BayesTheorem . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 CategoricalDistribution . . . . . . . . . . . . . . . . . 11 2.4.3 DirichletDistribution . . . . . . . . . . . . . . . . . . 11 2.4.4 GenerativeProbabilisticModelsandPlatenotation . 11 2.4.5 LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.6 Expectation-Maximization. . . . . . . . . . . . . . . . 13 2.4.7 MarkovChainMonteCarlo(MCMC)Methods . . . . 14 2.5 ProbabilisticLogicPrograms . . . . . . . . . . . . . . . . . . 15 2.5.1 DistributionSemantics . . . . . . . . . . . . . . . . . . 15 2.5.2 ProbLog . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.3 LogicProgramswithAnnotatedDisjunctionsandEM- BLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 StatisticalAbduction . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.1 PeircebayesandLatentDirichletAnalysis . . . . . . . 19 3 AnnotatedLiteralPrograms 21 3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 UnprioredModel . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 PrioredModel . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 FormalDefinition . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 UnprioredModel . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 PrioredModel . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 ComparisontoDistributionSemantics . . . . . . . . . . . . . 26 3.4.1 UnprioredModel . . . . . . . . . . . . . . . . . . . . . 26 TranslationfromProbLog . . . . . . . . . . . . . . . . 27 TranslationtoProbLog . . . . . . . . . . . . . . . . . . 28 3.4.2 Prioredmodel . . . . . . . . . . . . . . . . . . . . . . . 30 viii 4 ASPinputprogramsinPeircebayes 31 4.1 BraveabductioninASP . . . . . . . . . . . . . . . . . . . . . 31 4.2 AutomatictranslationofPeircebayesinputprograms . . . . 32 4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.1 LDAandCLDA. . . . . . . . . . . . . . . . . . . . . . 34 4.3.2 RIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 ParameterLearning 39 5.1 PartialInterpretations . . . . . . . . . . . . . . . . . . . . . . 39 5.2 PrioredModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3 Unprioredmodel . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 PILPwithPROBXHAIL 43 6.1 PILPLearningtask . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1.1 Unprioredmodel . . . . . . . . . . . . . . . . . . . . . 43 6.1.2 Prioredmodel . . . . . . . . . . . . . . . . . . . . . . . 43 PointEstimate . . . . . . . . . . . . . . . . . . . . . . . 43 BayesianMethod . . . . . . . . . . . . . . . . . . . . . 43 6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.3 StructureLearning . . . . . . . . . . . . . . . . . . . . 44 6.2.4 ParameterLearning . . . . . . . . . . . . . . . . . . . 46 6.3 Proofofcorrectness . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.1 Unprioredmodel . . . . . . . . . . . . . . . . . . . . . 46 6.3.2 Prioredmodel . . . . . . . . . . . . . . . . . . . . . . . 47 7 PILPEvaluation 49 7.1 Syntheticdataexperiment-GroundKernel . . . . . . . . . . 49 7.1.1 EMBLEM . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.1.2 Peircebayes . . . . . . . . . . . . . . . . . . . . . . . . 50 LogLikelihoodandMeanSquareErroragainstprob- abilities . . . . . . . . . . . . . . . . . . . . . 50 LogLikelihoodandMeanSquareErroragainstnum- berofliterals . . . . . . . . . . . . . . . . . . 50 7.2 Syntheticdata-Ambiguousdataset . . . . . . . . . . . . . . 51 7.2.1 EMBLEM . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.2.2 Peircebayes . . . . . . . . . . . . . . . . . . . . . . . . 52 8 RelatedWork 53 8.1 ProbFOILandProbFOIL+ . . . . . . . . . . . . . . . . . . . . 53 8.1.1 PILPtask . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.2 SLIPCASEandSLIPCOVER . . . . . . . . . . . . . . . . . . . 54 8.2.1 PILPtask . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.3 SemCP-Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ix 9 ConclusionandFutureWork 57 9.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.2 PotentialExtensions . . . . . . . . . . . . . . . . . . . . . . . 57 9.2.1 Data-drivenmostspecifichypothesis . . . . . . . . . 57 9.2.2 Probabilisticmodelextension . . . . . . . . . . . . . . 58 9.2.3 Potentialapplications . . . . . . . . . . . . . . . . . . 59 9.3 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . 60 A Peircebayestaskimplementations 61 A.1 RIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A.1.1 Prologimplementation. . . . . . . . . . . . . . . . . . 61 A.1.2 ASPimplementation . . . . . . . . . . . . . . . . . . . 62 OuterQueryGrounding . . . . . . . . . . . . . . . . . 62 AbductiveTask . . . . . . . . . . . . . . . . . . . . . . 62 A.2 SeededLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A.2.1 Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A.2.2 ASPrepresentation . . . . . . . . . . . . . . . . . . . . 64 OuterQueries . . . . . . . . . . . . . . . . . . . . . . . 64 InnerQueries . . . . . . . . . . . . . . . . . . . . . . . 64 A.3 FastLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.3.1 OuterQuery . . . . . . . . . . . . . . . . . . . . . . . . 65 A.3.2 InnerQuery . . . . . . . . . . . . . . . . . . . . . . . . 65 Bibliography 67

Description:
SLDNF. Selective Linear Definite clause resolution with Negation as Failure. XHAIL results in a complex architecture. A more elegant expressive power is comparable to probabilistic models with discrete ran- dom variables. For each person, the occurrence of each disease is represented by a bi-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.