ebook img

Problems in Real Analysis PDF

452 Pages·2009·4.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Problems in Real Analysis

Problems in Real Analysis Teodora-Liliana T. Ra˘dulescu Vicen¸tiu D. Ra˘dulescu Titu Andreescu Problems in Real Analysis Advanced Calculus on the Real Axis Teodora-LilianaT.Ra˘dulescu Vicen¸tiuD.Ra˘dulescu DepartmentofMathematics SimionStoilowMathematicsInstitute FratiiBuzestiNationalCollege RomanianAcademy Craiova200352 Bucharest014700 Romania Romania [email protected] [email protected] TituAndreescu SchoolofNaturalSciencesandMathematics UniversityofTexasatDallas Richardson,TX75080 USA [email protected] ISBN:978-0-387-77378-0 e-ISBN:978-0-387-77379-7 DOI:10.1007/978-0-387-77379-7 Springer Dordrecht Heidelberg London New York LibraryofCongressControlNumber:2009926486 MathematicsSubjectClassification(2000):00A07,26-01,28-01,40-01 ©SpringerScience+BusinessMedia,LLC2009 Allrightsreserved. Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper Springer is part of Springer Science+Business Media (www.springer.com) To understandmathematicsmeanstobeable todo mathematics.And whatdoes itmean doingmathematics?In thefirstplaceit meansto beableto solvemathematical problems. —GeorgePo´lya(1887–1985) Wecomenearest tothegreatwhen we are greatin humility. —RabindranathTagore(1861–1941) Foreword Thiscarefullywrittenbookpresentsanextremelymotivatingandoriginalapproach, bymeansofproblem-solving,tocalculusontherealline,andassuch,servesasa perfect introduction to real analysis. To achieve their goal, the authors have care- fully selected problems that cover an impressive range of topics, all at the core of the subject. Some problems are genuinely difficult, but solving them will be highly rewarding, since each problem opens a new vista in the understanding of mathematics.Thisbookisalsoperfectforself-study,sincesolutionsareprovided. Ilikethecarewithwhichtheauthorsinterspersetheirtextwithcarefulreviews of the backgroundmaterialneededin each chapter,thought-provokingquotations, andhighlyinterestingandwell-documentedhistoricalnotes.Inshort,thisbookalso makesverypleasantreading,andIamconfidentthateachofitsreaderswillenjoy reading it as much as I did. The charm and never-ending beauty of mathematics pervadeallitspages. Inaddition,thislittlegemillustratestheideathatonecannotlearnmathematics withoutsolvingdifficultproblems.Itisaworldapartfromthe“computeraddiction” that we are unfortunatelywitnessing among the youngergenerationsof would-be mathematicians,whousetoomuchready-madesoftwareinsteadortheirbrains,or whostandinaweinfrontofcomputer-generatedimages,asiftheyhadbecomethe essenceofmathematics.Assuch,itcarriesaveryusefulmessage. Onecannothelpcomparingthisbooktoa“greatancestor,”thefamedProblems andTheoremsinAnalysis,byPo´lyaandSzego˝,a textthathasstronglyinfluenced generationsofanalysts.Iamconfidentthatthisbookwillhaveasimilarimpact. HongKong,July2008 PhilippeG.Ciarlet vii Preface IfIhaveseenfurtheritisbystandingontheshouldersofgiants. —SirIsaacNewton(1642–1727),LettertoRobertHooke,1675 Mathematical analysis is central to mathematics, whether pure or applied. This discipline arises in various mathematical models whose dependent variables vary continuouslyandarefunctionsofoneorseveralvariables.Realanalysisdatestothe mid-nineteenthcentury,anditsrootsgobackto the pioneeringpapersbyCauchy, Riemann,andWeierstrass. In1821,Cauchyestablished new requirementsofrigorin hiscelebratedCours d’Analyse.Thequestionsheraisedarethefollowing: – Whatisaderivativereally?Answer:alimit. – Whatisanintegralreally?Answer:alimit. – Whatisaninfiniteseriesreally?Answer:alimit. Thisleadsto – Whatisalimit?Answer:anumber. And,finally,thelastquestion: – Whatisanumber? Weierstrassandhiscollaborators(Heine,Cantor)answeredthisquestionaround 1870–1872. Ourtreatmentin thisvolumeis stronglyrelatedto the pioneeringcontributions indifferentialcalculusbyNewton,Leibniz,Descartes,andEulerintheseventeenth and eighteenth centuries, with mathematical rigor in the nineteenth century pro- (cid:109)(cid:111)(cid:116)(cid:101)(cid:100)(cid:98)(cid:121)(cid:67)(cid:97)(cid:117)(cid:99)(cid:104)(cid:121)(cid:44)(cid:87)(cid:101)(cid:105)(cid:101)(cid:114)(cid:115)(cid:116)(cid:114)(cid:97)(cid:115)(cid:115)(cid:44)(cid:97)(cid:110)(cid:100)(cid:80)(cid:101)(cid:97)(cid:110)(cid:111)(cid:46)(cid:32)(cid:84)(cid:104)(cid:105)(cid:115)(cid:32)(cid:112)(cid:114)(cid:101)(cid:115)(cid:101)(cid:110)(cid:116)(cid:97)(cid:116)(cid:105)(cid:111)(cid:110)(cid:32)(cid:102)(cid:117)(cid:114)(cid:116)(cid:104)(cid:101)(cid:114)(cid:115)(cid:32)(cid:109)(cid:111)(cid:100)(cid:101)(cid:114)(cid:110)(cid:32)(cid:100)(cid:105)(cid:114)(cid:101)(cid:99)(cid:116)(cid:105)(cid:111)(cid:110)(cid:115) (cid:105)(cid:110)(cid:32)(cid:116)(cid:104)(cid:101)(cid:32)(cid:105)(cid:110)(cid:116)(cid:101)(cid:103)(cid:114)(cid:97)(cid:108)(cid:99)(cid:97)(cid:108)(cid:99)(cid:117)(cid:108)(cid:117)(cid:115)(cid:100)(cid:101)(cid:118)(cid:101)(cid:108)(cid:111)(cid:112)(cid:101)(cid:100)(cid:98)(cid:121)(cid:82)(cid:105)(cid:101)(cid:109)(cid:97)(cid:110)(cid:110)(cid:97)(cid:110)(cid:100)(cid:68)(cid:97)(cid:114)(cid:98)(cid:111)(cid:117)(cid:120)(cid:46) Duetothehugeimpactofmathematicalanalysis,wehaveintendedinthisbook tobuildabridgebetweenordinaryhigh-schoolorundergraduateexercisesandmore difficultand abstractconceptsor problemsrelated to this field. We presentin this volumeanunusualcollectionofcreativeproblemsinelementarymathematicalanal- ysis.Weintendtodevelopsomebasicprinciplesandsolutiontechniquesandtooffer a systematic illustration of how to organize the natural transition from problem- solving activity toward exploring, investigating, and discovering new results and properties. ix x Preface The aim of this volume in elementary mathematical analysis is to introduce, throughproblems-solving,fundamentalideasandmethodswithoutlosing sightof thecontextinwhichtheyfirstdevelopedandtheroletheyplayinscienceandpartic- ularlyinphysicsandotherappliedsciences.Thisvolumeaimsatrapidlydeveloping differential and integral calculus for real-valued functions of one real variable, givingrelevancetothediscussionofsomedifferentialequationsandmaximumprin- ciples. Thebookismainlygearedtowardstudentsstudyingthebasicprinciplesofmath- ematicalanalysis.However,givenitsselectionofproblems,organization,andlevel, it would be an ideal choice for tutorial or problem-solving seminars, particularly thosegearedtowardthePutnamexamandotherhigh-levelmathematicalcontests. We also address this work to motivated high-school and undergraduate students. Thisvolumeismeantprimarilyforstudentsinmathematics,physics,engineering, andcomputerscience,but,notwithoutauthorialambition,webelieveitcanbeused by anyonewho wants to learn elementarymathematicalanalysis by solvingprob- lems. The book is also a must-have for instructors wishing to enrich their teach- ingwithsomecarefullychosenproblemsandforindividualswhoareinterestedin solvingdifficultproblemsinmathematicalanalysisontherealaxis.Thevolumeis intendedasa challengeto involvestudentsas active participantsin the course.To makeourworkself-contained,allchaptersincludebasicdefinitionsandproperties. The problems are clustered by topic into eight chapters, each of them containing bothsectionsof proposedproblemswith completesolutionsand separatesections includingauxiliaryproblems,theirsolutionsbeingleftto ourreaders.Throughout thebook,studentsareencouragedtoexpresstheirownideas,solutions,generaliza- tions,conjectures,andconclusions. The volume contains a comprehensivecollection of challenging problems, our goal being twofold: first, to encourage the readers to move away from routine exercises and memorized algorithms toward creative solutions and nonstandard problem-solvingtechniques; and second, to help our readers to develop a host of newmathematicaltoolsandstrategiesthatwillbeusefulbeyondtheclassroomand inanumberofapplieddisciplines.Weincluderepresentativeproblemsproposedat variousnationalor internationalcompetitions, problemsselected from prestigious mathematicaljournals,butalsosomeoriginalproblemspublishedinleadingpubli- cations.Thatiswhymostoftheproblemscontainedinthisbookareneitherstandard noreasy.Thereaderswillfindbothclassicaltopicsofmathematicalanalysisonthe realaxisandmodernones.Additionally,historicalcommentsanddevelopmentsare presentedthroughoutthebookinordertostimulatefurtherinquiry. Traditionally,arigorousfirstcourseorproblembookinelementarymathematical analysisprogressesinthefollowingorder: Sequences Functions=⇒Continuity=⇒Differentiability=⇒Integration Limits Preface xi However,thehistoricaldevelopmentofthesesubjectsoccurredinreverseorder: Archimedes Newton(1665) Cauchy(1821)⇐=Weierstrass(1872)⇐= ⇐= Kepler(1615) Leibniz(1675) Fermat(1638) Thisbookbringsto lifetheconnectionsamongdifferentareasofmathematical analysis and explains how various subject areas flow from one another. The vol- umeillustratestherichnessofelementarymathematicalanalysisasoneofthemost classicalfieldsinmathematics.Thetopicisrevisitedfromthehigherviewpointof universitymathematics,presentingadeeperunderstandingoffamiliarsubjectsand anintroductiontonewandexcitingresearchfields,suchasGinzburg–Landauequa- tions, the maximum principle, singular differential and integral inequalities, and nonlineardifferentialequations. The volume is divided into four parts, ten chapters, and two appendices, as follows: PartI.Sequences,Series,andLimits Chapter1.Sequences Chapter2.Series Chapter3.LimitsofFunctions PartII.QualitativePropertiesofContinuousandDifferentiableFunctions Chapter4.Continuity Chapter5.Differentiability PartIII.ApplicationstoConvexFunctionsandOptimization Chapter6.ConvexFunctions Chapter7.InequalitiesandExtremumProblems PartIV.Antiderivatives,RiemannIntegrability,andApplications Chapter8.Antiderivatives Chapter9.RiemannIntegrability Chapter10.ApplicationsoftheIntegralCalculus AppendixA.BasicElementsofSetTheory AppendixB.TopologyoftheRealLine Eachchapterisdividedintosections.Exercises,formulas,andfiguresarenum- beredconsecutivelyineachsection,andwe also indicateboththechapterandthe sectionnumbers.We haveincludedatthebeginningofchaptersandsectionsquo- tations from the literature. They are intended to give the flavor of mathematics as asciencewithalonghistory.Thisbookalsocontainsarichglossaryandindex,as wellasalistofabbreviationsandnotation. xii Preface Keyfeaturesofthisvolume: – contains a collection of challenging problems in elementary mathematical analysis; – includesincisiveexplanationsofeveryimportantideaanddevelopsilluminating applications of many theorems, along with detailed solutions, suitable cross- references,specifichow-tohints,andsuggestions; – isself-containedandassumesonlyabasicknowledgebutopensthepathtocom- petitiveresearchinthefield; – usescompetition-likeproblemsasaplatformfortrainingtypicalinventiveskills; – develops basic valuable techniques for solving problems in mathematical ana- lysisontherealaxis; – 38carefullydrawnfiguressupporttheunderstandingofanalyticconcepts; – includes interesting and valuable historical account of ideas and methods in analysis; – containsexcellentbibliography,glossary,andindex. Thebookhaselementaryprerequisites,anditisdesignedtobeusedforlecture coursesonmethodologyofmathematicalresearchordiscoveryinmathematics.This workisafirststeptowarddevelopingconnectionsbetweenanalysisandothermath- ematicaldisciplines,aswellasphysicsandengineering. The background the student needs to read this book is quite modest. Anyone with elementary knowledge in calculus is well-prepared for almost everything to befoundhere.Takingintoaccounttherichintroductoryblurbsprovidedwitheach chapter,noparticularprerequisitesarenecessary,evenifadoseofmathematicalso- phisticationisneeded.Thebookdevelopsmanyresultsthatarerarelyseen,andeven experiencedreadersarelikelytofindmaterialthatischallengingandinformative. Ourvisionthroughoutthisvolumeiscloselyinspiredbythefollowingwordsof George Po´lya [90] (1945) on the role of problems and discovery in mathematics: Infallible rules of discovery leading to the solution of all possible mathematical problemswouldbemoredesirablethanthephilosopher’sstone,vainlysoughtbyall alchemists.Thefirstruleofdiscoveryistohavebrainsandgoodluck.Thesecond ruleofdiscoveryistosittightandwaittillyougetabrightidea.Thoseofuswho have little luck and less brain sometimes sit for decades.The fact seems to be, as Poincare´ observed,itistheman,notthemethod,thatsolvestheproblem. Despite our best intentions, errors are sure to have slipped by us. Please let us knowofanyyoufind. August2008 Teodora-LilianaRa˘dulescu Vicen¸tiuRa˘dulescu TituAndreescu

Description:
Teodora-Liliana T. R˘adulescu. Vicentiu D. R˘adulescu. Titu Andreescu. Problems in Real Analysis. Advanced Calculus on the Real Axis
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.