ebook img

Probing the distribution of dark matter in the Abell 901/902 supercluster with weak lensing PDF

23 Pages·2008·1.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing the distribution of dark matter in the Abell 901/902 supercluster with weak lensing

ACCEPTEDFORPUBLICATIONINTHEASTROPHYSICALJOURNAL,NOVEMBER10,2001 PreprinttypesetusingLATEXstyleemulateapjv.14/09/00 PROBINGTHEDISTRIBUTIONOFDARKMATTERINTHE ABELL901/902SUPERCLUSTERWITHWEAKLENSING M.E.GRAY InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA,UnitedKingdom [email protected] A.N.TAYLOR InstituteforAstronomy,BlackfordHill,EdinburghEH93HJ,UnitedKingdom [email protected] K.MEISENHEIMER Max-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl17,D-69117,Heidelberg,Germany [email protected] 1 S.DYE 0 AstrophysicsGroup,BlackettLab,ImperialCollege,PrinceConsortRoad,LondonSW72BW,UnitedKingdom 0 [email protected] 2 C.WOLF,&E.THOMMES v Max-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl17,D-69117,Heidelberg,Germany o [email protected] N AcceptedforpublicationintheAstrophysicalJournal,November10,2001 4 ABSTRACT 1 WepresentaweakshearanalysisoftheAbell901/902supercluster,composedofthreerichclustersatz =0.16. UsingadeepR-bandimagefromthe0.5◦×0.5◦MPG/ESOWideFieldImagertogetherwithsupplementaryB- 1 band observations, we build up a comprehensive picture of the light and mass distributions in this region. We v findthat,onaverage,thelightfromtheearly-typegalaxiestracesthedarkmatterfairlywell,althoughonecluster 8 isanotableexceptiontothisrule. Theclustersthemselvesexhibitarangeofmass-to-light(M/L)ratios,X-ray 8 properties,andgalaxypopulations. We attempttomodelthe relationbetweenthe totalmassandthelightfrom 2 1 the early-type galaxies with a simple scale-independentlinear biasing model. We find M/LB = 130h for the 1 earlytypegalaxieswithzerostochasticity,which,iftakenatfacevalue,wouldimplyΩm < 0.1. However,this 1 linearrelationbreaksdownonsmallscalesandonscalesequivalenttotheaverageclusterseparation(∼1Mpc), 0 demonstratingthatasingleM/Lratioisnotadequatetofullydescribethemass-lightrelationinthesupercluster. / Rather, thescatterinM/Lratiosobservedfortheclusterssupportsamodelincorporatingnon-linearbiasingor h stochasticprocesses.Finally,thereisacleardetectionoffilamentarystructureconnectingtwooftheclusters,seen p - inboththegalaxyanddarkmatterdistributions,andwediscusstheeffectsofcluster-clusterandcluster-filament o interactionsasameanstoreconcilethedisparatedescriptionsofthesupercluster. r t Subjectheadings:gravitationallensing—cosmology:darkmatter—galaxies:clusters:general—galaxies: s a clusters:individual(Abell901a,Abell901b,Abell902) : v i 1. INTRODUCTION cently,superclusterstudieshavebeenextendedtointermediate X redshiftswiththeweaklensingstudyofMS0302+16atz =0.4 Gravitationallensingisapowerfultoolthatallowsustodi- r byKaiseretal.(1998),andpushedtoevenhigherredshiftswith a rectlymapdarkmatteranddeterminetherelationbetweenthe theopticaldetectionofaz ∼ 0.91superclusterbyLubinetal. observeddistributionoflightandtheunderlyingmassdistribu- (2000). tion. In recent years, the development of sophisticated lens- Superclusters are invaluable testing grounds for theories of ing techniques coupled with a new generation of wide-field cosmology,the growthofstructure, galaxyformation,andthe imaging instruments has opened doors to lensing studies on natureof darkmatter. Thepresenceorabsenceoffilamentary unprecedentedly large scales. Weak lensing is now a well- structure can be used to probe theories of structure formation establishedmethodfordeterminingthemassdistributionofrich (e.g.Cen etal. 1995). Thedegreeof substructureis reflective clusters of galaxies (Bartelmann & Schneider 2001; Mellier oftheuniversalmatterdensityparameter,Ω ,(Richstoneetal. 1999). With the increased confidence in lensing techniques, m 1992),andsimulationsfindthatthemassfractionin filaments recent studies have turned from clusters to blank fields (Ba- isexpectedtobeslightlylargerinalow-densityuniverse(Col- con etal. 2000;Kaiser et al. 2000;Van Waerbekeet al. 2000; berg et al. 1999). Furthermore, supercluster mass-to-light ra- Wittmanetal.2000;Maolietal.2001)tomeasurethestatistical tios(M/L)canbealsobeusedtodetermineΩ (Kaiseretal. ‘cosmicshear’duetolensingbylarge-scalestructures. m 1998). Thislatter calculation rests on the assumption that the Superclusters,comprising∼2-10clustersofgalaxies,arethe supercluster M/L ratio is representative of the Universe as a largest known systems of galaxies in the Universe (Vogeley whole, i.e. thatthe M/L ratioflattens to a constantonsuper- et al. 1994) and representa stepping-stone between rich clus- clusterscales(Bahcalletal.2000). ters and large-scale structure. Clusters of clusters and associ- InthispaperwepresentaweaklensinganalysisoftheAbell atedfilamentarystructuresinthegalaxydistributionhavebeen 901(a,b)/Abell902supercluster(referredtohereafterasA901/902) observedatlowredshiftthroughredshiftsurveysoftheCorona using the 0.5◦ × 0.5◦ Wide-Field Imager (WFI; Baade et al. Borealis,Shapley,andPerseus-Piscessuperclusters(e.g.Small 1998, 1999) on the MPG/ESO 2.2m telescope. Our aim is et al. 1997; Quintana et al. 1995; Postman et al. 1988). Re- to trace the dark matter distribution in the supercluster field 1 2 Grayetal. and to investigate whether it is concentrated in cluster cores fordsus the opportunityto test this hypothesison another su- or distributed through filamentary structures. In the ‘Cosmic perclustersystematlowerredshift,andtodetermineifasingle, Web’ theory of structure formation (Bond et al. 1996), fila- scale-independentM/Lratiocandescribetherelationbetween mentsemergefromtheprimordialdensityfieldafterclusterfor- massandlightintheentiresystem. Wewilldiscusstheresult- mation. Thesefilamentsarethoughtto harbora largefraction ing implications of such a conclusion for values of Ω , and m ofpresentdaybaryonsintheformofhotgas,promptingcalls exploreotherpossiblebiasingrelations. for X-ray searches (Pierre et al. 2000). However, attempts to 1.1. TheA901/902supercluster detect filamentary X-ray gas have to date been unsuccessful, yielding only upper limits (e.g. Briel & Henry 1995). As X- TheA901/902superclusteriscomposedofthreeclustersof rayemissivityscalesasthesquareofthedensitywhilegravita- galaxies,allatz = 0.16andlyingwithin30′×30′onthesky. tionalshearscaleslinearly,aweaklensing-basedapproachmay Abell901islistedasadoublecluster(A901aandA901b)with prove more successful in uncovering such structures. Kaiser irregularmorphologyintheX-rayBrightestAbell-typeCluster etal.(1998)reporttantalisingbuttentativeevidenceforalens- Sample (XBACS; Ebeling et al. 1996)of the ROSAT All-Sky ing detection of a mass bridge within MS0302+16. Here we Survey, having L (0.1-2.4 keV)= 6.01 and 3.49× 1044 erg X will use weak shear reconstruction algorithms to create two- s−1. dimensionalmapsofthemassdistributionandsearchforsimi- Pointed ROSAT HRI observations by Schindler (2000) re- larfilamentarystructureswithintheA901/902superclusterre- veal that the emission from the ‘brighter subcluster’ of Abell gion. 901 (labelled Abell 901a in the Ebeling et al. nomenclature In addition, we also wish to determine how well the opti- used in this paper) suffers from confusion with several X-ray cal light traces the underlying dark matter, and how the clus- pointsourcesinthevicinity.SheconcludesthattheX-rayemis- ter masses determinedby weak lensing compareto those pre- sion from Abell 901a is in fact point-like and suggests emis- dictedfromtheresultsofapreviousX-raystudyoftheregion sionfromanactivenucleusasalikelycandidateforthesource. (Schindler 2000). Finally, we wish to examine the ratio of Abell 901b, on the other hand, is shown to exhibit very reg- the total mass of the system to the B-band light of the early- ular and compactcluster emission, with a revised L (0.1-2.4 X type supercluster galaxies, and to discuss the resulting impli- keV)=3.6±0.1×1044ergs−1,possiblycontainingacooling cations for Ωm. Measurementsof the mass-to-(total)-lightra- flow.NoX-rayfluxisdetectedattheopticalcenterofAbell902 tio of clusters of galaxies typically yield values in the range (as determined by Abell, Corwin, & Olowin 1989), although M/L ∼ 200 − 300h (Carlberg et al. 1996; Mellier 1999), there is point-like emission 2 arcmin to the west of this posi- which,iftakenastheuniversalM/L,implyΩm = 0.2. How- tion. ever, if the M/L ratio continues to increase with scale to the Boththeclusteringofnumbercounts(Abelletal.1989)and regime of superclusters or beyond, Ωm could be considerably theX-rayemission(Ebelingetal.1996;Schindler2000)inthis larger. This would require the galaxies to be significantly bi- fieldindicatethatthisisanoverdenseregion.Howexactlymass ased with respectto the mass, so that the efficiencyof galaxy is distributed through the field and which of the objects dis- formationisgreatlyenhancedinthedensestregions. cussed here deserves to be labelled a ‘cluster’ is not so clear, Bahcall, Lubin, & Dorman (1995) explore this hypothesis, however. Wethereforeturntogravitationallensingtotracethe and compile results from the literature to trace an increasing underlyingmassdistributionofthissystem. M/L ratio as they proceed in scale from galaxies to groups The structure of the paper is as follows: in §2 we outline and then to clusters. Their best-fit values for the M/L of in- the observations of the supercluster field and discuss the data dividual galaxies result in a M/L ratio for ellipticals that is reductionandastrometricissues. In§3weperformthecorrec- ∼4timesthatforspirals,suggestingthatonaverage,ellipticals tionsforthepoint-spreadfunctionnecessarytoaccuratelymea- containmoremassthanspiralsforthesameluminosityandra- suretheshapesofthebackgroundgalaxies.In§4wediscussthe dius. Theyconcludethatthetotalmassofgroups,clustersand photometricpropertiesoftheclusters,andin§5wepresentthe superclusterscanbeaccountedforbythemassofthedarkha- results of the weak lensing analysis. §6 contains a statistical losoftheirmembergalaxies(whichmayhavebeenstrippedoff cross-correlationofthelightandmassdistributions. Finally,in inadenseenvironmentbutstillremainwithinthesystem)plus §7wesummarizetheresultsandpresentourconclusions. the massofthe hotinter-clustergas, andthatthereisnogreat repositoryofdarkmatterhiddenonlargerscales. 2. OBSERVATIONS AND DATAREDUCTION Indeed,onthescaleofsuperclusters,measurementsofgalaxy 2.1. Observingstrategy velocity dispersions indicate that the universal M/L function appears to flatten to ∼ 300h (assuming that the systems are Theobservationspresentedinthispaperwereundertakenas bound but not necessarily in an equilibrium state). Bahcall partoftheCOMBO-17survey(Wolfetal. 2001). Thesurvey et al. (1995) find little evidence that the M/L ratio continues has imagedone square degreeof sky split overfour fields us- to increase with scale, implyingΩ ∼ 0.2. The issue of a low ingthe Wide-FieldImager(WFI) atthe MPG/ESO 2.2mtele- supercluster M/L ratio was revisited by Kaiser et al. (1998) scopeonLaSilla, Chile. Forlensingstudies, oneofthefields in a weak-shear study of a supercluster of three X-ray lumi- wascenteredontheA901/A902supercluster.Thefiltersetwas nous clusters at z = 0.4. This was the first direct mapping chosensuchastoprovidereliableclassificationandphotomet- ofdarkmatteronthesescales,independentofbiasingassump- ric redshift estimators, and consists of five broad-band filters tions. Kaiser etal. presenttheremarkableresultthatthe light (UBVRI)and12narrow-bandfiltersrangingfrom420to914 from the color-selected early-type galaxies alone is sufficient nm. A deepR-bandimagetakenunderthebestseeingcondi- totracethemassasrevealedbyweaklensing,withthemassno tions duringeach run providesexcellentdata for gravitational more extendedthan the early-typegalaxiesand with late-type lensingstudies. galaxieshavingnegligibleM/L . Ourweaklensingstudyaf- In §2.2, we outline the initial processing applied to images B under the standard WFI pipeline reduction developed at the AweaklensinganalysisoftheAbell901/902supercluster 3 MPIAHeidelberg. Althoughtheresultingimagesareadequate Tothisend,flat-fieldcorrectedmosaicimagesarealignedwith foralmostallastrophysicalapplications,weneedfurtherhigher- respect to moderatelybrightstars in the field (to integerpixel order corrections for the detection of unbiased lensing shear. accuracy). The cosmic ray detection algorithm employs a σ- Thisisdescribedin§2.3. clippingwithrespecttothemedianpixelvaluederivedfromat The data used in this paper are the deep R-band and sup- leastfiveexposureswithcomparableseeing.Discrepantvalues plementaryB-bandimagesfromtheCOMBO-17observations arereplacedbythemedianvalue. of the superclusterfield. We will use the R-band image for a weak shear analysis of the supercluster, in combination with 2.3. Astrometry color information from the bluer band to separate foreground 2.3.1. Linearastrometricfitting and backgroundgalaxypopulations. The details of the obser- vations are presented in Table 2.1. The discussion of the full While the creation of mosaiced images by the standard re- 17filterdatasetfortheA901/902fieldandthephotometricred- ductionpipelinedescribedaboveissufficientformostpurposes, shiftsderivedfromitisreservedforafurtherpaper. werequireamorerigorouscharacterizationofthegeometryof the camera for our weak shear study. For example, intrinsic 2.2. InitialprocessingbystandardWFIpipeline rotationof the FOV of the WFI is knownto be caused byim- perfectalignmentofthe2.2mtelescopeaxisofrotationwiththe Imagingby the Wide Field Imager(WFI) onthe 2.2mtele- celestialpoleaswellastelescopeflexureintrackingacrossthe scope at La Silla, Chile is carried out with a 4 × 2 array of sky.Othercausesareatmosphericinorigin,duetothedifferen- 2048× 4096 pixel CCDs. For clarity and ease of reference, tial refractionof objectimagesby the Earth’satmosphereand chipsarelabelledbytheletters‘a’,startingatthetopleftofthe thefactthatanoffsetinrightascensionproducesarotationdue mosaic,throughaclockwisedirectiontochip‘h’locatedatthe to the non-perpendicularityof lines of declination away from bottomleftofthemosaic. Withaverticalchip-to-chipsepara- thecelestialequator. tion of 59 pixelsanda correspondinghorizontalseparationof Tothisend,wechosetotreateachCCDimageasanindivid- 98pixels,thescaleof1pix≡0.238′′givesatotalfieldofview ualcontributiontothefinalcoaddedimage,andtocomputean (FOV)fortheWFIof0.56◦×0.55◦. astrometric solution separately for each chip image. For each De-biasingisconductedbyindividuallysubtractingthe(ver- debiased, normalized, flattened and cosmic-ray cleaned mo- ticallysmoothed)levelmeasuredintheoverscanregionofeach saic the approximaterotations described above were removed chipimage. Non-linearity(i.e. departurefromtheproportion- to restore the original detector coordinate system. Next, the ality between the number of incidentphotons and the electric eight component chip images were extracted from each mo- chargereadoutattheendofanexposure,whichworsenswith saic. Henceforth the term ‘image’ shall refer to an individual increasing intensity), is corrected by scaling each de-biassed 2K×4Kchipimage. chip image accordingto an ESO laboratory-determinedfactor UsingSExtractor2.1(Bertin&Arnouts1996)aninitialcat- (Baade1999)2. Onlychipsb,c,f&gneedbecorrectedinthis alogueof brightobjectswas createdfor each image. A rough way,theworstnon-linearitybeingexhibitedbychipfwhichat transformationwasperformedtoconvertthepixelcoordinates saturation(65000counts)deviatesby1.4%fromlinearity. (x,y)tocelestialcoordinates(α,δ)usingthepointinginforma- Production of mosaiced images must be handled with care tionencodedintheimageheader. Theobjectsinthecatalogue duetothephysicalcomplicationofchip-to-chipmisalignments werethenmatchedtotheSuperCOSMOSSouthernSkySurvey in the CCD array. Translational misalignments are easily ac- 3withinatoleranceof5′′. Thesereferenceobjectswereusedto commodated, however intrinsic chip rotations with respect to iterativelycalculatealinearastrometricsolutionfortheimage, the array are not. A slight chip rotation produces the added withthetangentpointforprojectionbeingtheopticalaxis. The complexityofhavingtorotatethechipimagebeforeinsertion rmsresidualsoftheobjectsusedinthefinalsolution(typically intothemosaic. numbering∼400perimage)differedfromthe medianby less Ratherthanrebinimages,rotationsareapproximatedbydi- than3σ. viding up the misaligned chip images into horizontal strips. Thelinearfitusedtakestheform: Each strip istheninserted intoa temporarychipimagewith a x = a +a ξ+a η horizontaloffsetdeterminedbytherequiredrotation.Thistem- 0 1 2 (1) y = a +a ξ+a η, porarychip image is then dividedinto verticalstrips and then 3 4 5 finally insertedinto the mosaic with verticaloffsets according wherethe ‘expected’coordinates(standardcoordinateson the totherotation.Adoptingthisshearingmethodconsiderablyre- tangentplane,projectedabouttheopticalaxis)arerelatedtothe duces data reduction time, is optimal for cosmic ray removal ‘measured’coordinates(x-ycoordinatesonthedetectorplane) (seebelow),andhasbeenshowntohavenoeffectonphotom- by a 6 coefficient linear fit. Note that field-to-field variations etry. Table 2 lists chip rotations determined independentlyin were found to be significant, so the external calibration was this workaspartofthe astrometricfitting describedin §2.3.1, calculatedforeachimageindividually. althoughtheyareinagreementwiththerotationsincorporated The linear fit can be decomposed into terms such as pixel intheWFIpipeline. scale,rotation,andnon-perpendicularityofthecoordinateaxes Afterproducingmosaicimagesinthisfashion,scienceframes for each image. The average rotation angles requiredto align were flattened with normalized mosaic flat-field frames pro- the x-y axes to a N-E orientation and the angle of deviation duced in exactly the same way. Since each physical pixel is fromtheperpendicularforthex-yaxesarelistedinTable2.3.1 maintainedintactthroughoutthereductionprocess,cosmicray foreachchip.Theresultingfitsproducedmedianrmsresiduals hits andcosmeticchipdefectscan bedetectedveryefficiently of 0.2 arcsec, i.e. less than 1 pixel and close to the limiting by comparing dithered images taken through the same filter. accuracyofthephotographicdata. 2 The WFI user manual is available via the ESO homepage at 3http://www-wfau.roe.ac.uk/sss http://www.eso.org. 4 Grayetal. TABLE1 SUMMARYOFOBSERVATIONSUSEDFORTHEPRESENTSTUDY Date Filter Exposures Date Filter Exposures 1999Feb18 B 10×500s 2000Jan31 R 8×600s 1999Feb19 B 12×500s 2000Feb06 R 27×500s 2000Feb12 R 9×500s total: 3.05h total: 6.33h TABLE2 DECOMPOSITIONOFTHEASTROMETRICFITS LinearFit RadialFit Chip Rotation ± Skew ± C a -288.3 53.5 -104.5 21.4 6.4 b 276.0 54.0 -117.0 17.2 -38.7 c 126.0 53.2 120.1 20.2 -29.4 d 130.7 54.5 161.9 19.8 0.7 e 144.9 53.9 -157.3 11.6 1.6 f 123.8 53.0 -115.2 16.3 -39.8 g 120.9 53.5 104.8 24.4 -50.6 h -98.3 49.9 74.7 27.2 13.0 Note.—Columns2-5listtheanglesofrotationandnon-perpendicularity(inarcseconds)fortheeightchipsaccordingtothelinearastrometricfit.Thefinalcolumn liststheradialdistortioncoefficient(radians−2)foundwhenaradialdistortionterm(asineq.[2])wasaddedtothefit. 2.3.2. Quantifyingshearinducedbyradialdistortions Itisquiteclearthatdespitethewidefieldofviewofthecam- era, the instrumental distortion in the WFI is extremely small Whilethelinearfitsproducedsatisfactoryresults,itisnever- and will not significantly affect our shear measurements. We thelessimportanttoconsiderhigher-orderorradialdistortions. shallcontinuewiththeanalysisusingthesimplelinearfitwith Asatesttosearchforpincushionorbarreldistortions,aradial nocorrectionforthenegligibleradialdistortion. Notethatcor- distortiontermwasaddedtothelinearfit,oftheform: rections involving higher-order polynomials could be used to r′ =r(1+Cr2), (2) remove any non-linear, non-radial distortions present, but we where r is the radial distance from the tangent point (optical seelittleevidenceofthesefromtheresidualsfollowingthelin- axis),cisthedistortioncoefficient,andr′ istheradialdistance earfit. fromthetangentpointinthepresenceofthedistortion. The fit for some chips (particularlythe y-componentof the 2.3.3. Registrationandcoaddition fitfortheinnerfourchips)improvedsomewhatwhentheradial term was added, but there was no significant improvementin theresultingrmsresidualsfortheinstrumentasawhole.How- ever,theresultsoftheradialfittingdoallowustoconstrainthe amount of linear distortion found in each chip. The resulting valuesofC (listedinthefinalcolumnTable2.3.1)weresmall, andhadasmalldispersionforeachchipfromimagetoimage. The contrast between the values for the inner and outer four chips indicates that the mosaic as a whole does not display a typicalradialdistortionpattern. Knowingthedistanceoftheedgeofeachchipfromthetan- gent point, this yields distortions of δr/r ∼ 0.025% at the furthest corners of the camera, or slightly higher for the in- nerchips. ThistallieswellwiththefiguresquotedintheWFI manual,whichclaimsgeometricdistortions≤0.08%acrossthe entirecamera. Wecanfurtherquantifyanyartificialshearinducedbysucha radialdistortionusingtherelationsofBaconetal.(2000).Ifthe displacementδr=Cr3 andˆristheunitradialvector,thenthe inducedinstrumentalshearisγ = Cr2eˆ,whereeˆ istheunit i i i radialellipticityvector. Usingtheradialdistortioncoefficients FIG. 2.—Candidategiantarc. Thepotentialdeflectinggalaxyisabarred derivedfromour astrometricfits, we find a shear patternwith spiralwithR=18andislocated∼2.5arcminfromthecenterofAbell902. amplitudeγ <0.0001throughout. AweaklensinganalysisoftheAbell901/902supercluster 5 FIG. 1.—TheR-bandviewofthecentral20×20arcminofthesuperclusterfield(seenatreducedresolution). Thetwolargetrianglesmarkthepositionsof Abell901andAbell902intheoriginalcatalogueofgalaxyclusters(Abelletal.1989),whilethethreelargecirclesindicatetheopticalcentersoftheclustersthat wehaveadoptedinthispaper. ThesmallercirclesindicatethelocationsoftheROSAT/HRIX-raysourcesfromSchindler(2000). Theremainingobjectsmarked bydiamondsaretwogalaxieswithknownredshift(alsofromSchindler2000),radiodetectionsfromtheNRAO/VLAAllSkySurvey(Condonetal.1998, labelled ‘VLA’)andtheIRASFaintSourceCatalogue(Moshir1990,labelled‘IRAS’).Northisup,eastistotheleft. 6 Grayetal. The linear astrometric fits for each individual chip image usedtocalculatetheweightedquadrupolemoments,definedas wereusedtoregistertheimagestothesamecoordinatesystem. Theimageswerethusalignedandcombinedwith3σ clipping Iij ≡ d2xw(x)xixjI(x), (3) Z rejectionofbadpixels,scalingbythemedianandweightingby exposure time. Due to the large number of images contribut- whereI(x)isthesurfacebrightnessoftheobjectatangularpo- ingto eachpixelin thefinalimage(44fortheR-band,22for sitionxfromtheobjectcenter,andw(x)isaGaussianweight the B-band), most bad columns and pixels were removed by function. Thescalelength,rg,oftheweightfunctionisprevi- theσ-clippingalgorithm.Thecombinedmosaicedimageswere ouslydeterminedbyhfindpeaksastheradiusoftheMexi- trimmedofthe noisyoutlyingregionswherethe overlapfrom canhatfilterfunctionthatmaximizesthesignal-to-noiseofthe theditheringpatternwasnotcomplete. Theresultingfinalim- objectdetection.Finally,theweightedquadrupolemomentsare ages used for the weak shear analysis measured8192×8192 usedtocalculatetheellipticitycomponents pixels (32.5′ ×32.5′), and the measured seeing was 0.7′′ (R- I −I 2I band)and1.1′′(B-band). e1 = 11 22, e2 = 21 . (4) I +I I +I Fig. 1 shows the inner regions of the R-band image, along 11 22 11 22 Photometric catalogues were also constructed for each im- with the published positions of the clusters from Abell et al. age, usingSExtractor2.1. Thedetectioncriteria were defined (1989)and the X-raysourcesfromSchindler(2000). Inaddi- such that an object was required to be 1.5σ above the back- tion,Fig.2showsacandidatestronglylensedsource. Thearc- groundandcomprisingatleast7connectedpixels. Thephoto- like structure is located 13 arcsec from a bright barred spiral metric information (from SExtractor) and the shape estimates galaxy,whichisinturnlocated∼2.5arcminfromtheadopted (fromimcat)werethenmergedtoprovidethefinalcatalogue center of Abell 902. The deflecting galaxy has R = 18 and forlensinganalysis, conservativelyrequiringthatanobjectbe B−Rcolorsimilartotheclustergalaxies. detectedbybothsoftwarepackages.Duetothesuperiorseeing and longer exposure time, the shape parameters derived from 2.4. Photometriccalibration theR-bandimagewill beused fortheweak shearreconstruc- Photometriccalibrationwasprovidedfromtwospectropho- tions, although as we describe in §5.1, the B −R colors will tometric COMBO-17 standards (Wolf et al. 2001, see) in the beusedto discriminatebetweentheforeground(includingthe A901/902fieldselectedfromthespectraldatabaseoftheHam- clustergalaxies)andthebackgroundpopulations. burg/ESO (HE) Survey (Wisotzki et al. 2000). Spectra were Finally, a mask was created directly from the image to re- obtainedusing a wide (5′′) slit on the ESO/Danish 1.54mand moveobjectsfromthecataloguethatlayinareascontaminated the ESO 1.52mtelescopeatLaSilla in November2000. Cor- bybrightstars,ghostimages,anddiffractionspikes.Thismasked rectingtheobservedA901/902standardspectratoremovethe regiontotalledonly3.4%ofthetotalareaoftheimage,andcan instrument,opticsandatmospheresignature,photometricscal- beseeninFig.6. ingsweredeterminedfromtheHEsurveystandards. Usingthe B- and R-band WFI filter responses, zero points were calcu- 3.2. AnisotropicPSFcorrection latedandmagnitudestransformedtotheVegasystem.Apparent Fig.3showsthesize-magnitudediagramforthefullsample magnitudeswere correctedforextinctionusingtheIRAS dust ofobjects. Thestarsareclearlyvisibleasacolumnofobjects maps of Schlegel et al. (1998). For an average E(B −V) = withhalf-lightradiiof1.8pixels,andcanbedistinguishedfrom 0.058andassuminganR = 3.1extinctioncurve,we derive V galaxiesdowntoR∼23.Toexaminethebehaviorofthepoint- corrections∆m = 0.25and∆m = 0.16. Weestimatethat B R spread function(PSF) across the image we select a sample of theS/N =3limitingmagnitudeinthetwobandsisR=25.7 non-saturated(R>16)stars. andB =25.5. ThestellarellipticitypatternacrossthefinalsummedR-band imageisshowninFig.4,andthedistributionofellipticitiesin 3. POINT SPREAD FUNCTION CORRECTIONS Fig.5. Whilethereisoverlapbetweenthechipregionsdueto In this section we outline the correction for such effects as theditheringpattern,wedividethemosaicedimageinto8ap- variableseeingconditionsfromexposuretoexposure,telescope proximatechipregionsforthepurposesofthePSFcorrection. trackingerrors,aswellassmearingofobjectsduetoimperfect Within these regions, outlined in Fig. 4, the PSF is smoothly alignment of images before coaddition and the circularization varyingandevenwithintheoverlapregionstherearenosharp ofsmallobjectsbytheseeing.Thesecorrectionshavebeendis- discontinuitiesinthebehaviorofthePSF. cussedin detailinseveralpreviouspapers(Kaiser, Squires,& We apply preliminary cuts to our catalogue to exclude ob- Broadhurst1995,hereafterKSB, withrefinementsin Luppino jects unsuitable for shear analysis. We remove those objects &Kaiser1997andHoekstraetal.1998). withahalf-lightradiussmallerthanthestellarhalf-lightradius, aswellasobjectswithanimcatsignificanceν < 5andwith 3.1. Objectcatalogues ellipticity e > 0.5. Next, within each chip region we fitted a The imcat software described in Kaiser et al. (1999) was two-dimensionalcubictothemeasuredstellarellipticities,iter- used to determine the shape parameters for the faint galaxy atingtwicetoremoveoutlierswithlargeresiduals. sampleusedintheweaklensinganalysis. Foreaseofcomput- Themodelledstellarellipticitieswereusedtocorrecttheel- ing,thehfindpeaksobjectdetectionroutinewasperformed lipticitiesofthegalaxiesby on2K×2Kimagesections,andtheresultingcataloguesshifted P bytheappropriateamountandconcatenatedtogether.Thelocal e =e− sme∗, (5) skybackgroundwasestimatedusinggetskyandandaperture corr Ps∗m magnitudes and half-light radii, rh, for each object were cal- wherestarredquantitiesreferredto stellarproperties,andPsm culatedusingtheapphotroutine. Finally, getshapeswas istheimcat‘smearpolarizability’matrixofhighermoments AweaklensinganalysisoftheAbell901/902supercluster 7 FIG. 4.—EllipticitypatternofstarsontheR-bandcoaddedimage,before(left)andafter(right)correctionfortheanisotropicPSF.Thehorizontalandvertical linesshowtheapproximatechipdivisionsusedforthepolynomialfitting. FIG.3.—Magnitudevs.half-lightradiusofallobjectsintheinitialR-band catalogue. Stars formaclear vertical locus andcanbeeasily differentiated FIG. 5.—Ellipticitiesdistributionofstars,before(crosses)andafter(dots) from galaxies down toR ∼ 23. Saturated stars deviate from this column correctionforPSFanisotropies. towardslargerhalf-lightradiiatbrightmagnitudes. 8 Grayetal. of surface brightness described in KSB. As the non-diagonal to the obvious brightest cluster galaxy of (close to the X-ray elements are small (< 2 × 10−4) and the diagonal elements positionsofSchindler2000),andinAbell902themorenorth- nearlyequal,wechoosetotreatthisasascalarequaltohalfthe ern of the two bright galaxies in the center of overdensity of trace. The mean stellar ellipticity before correction and after numbers in that region. Note that these three positions differ correctionwasthen slightlyfromthe(two)positionsgiveninAbelletal.(1989)for e =0.014±0.011 e =−0.047±0.014 (before) Abell901andAbell902(seeFig1). 1 2 e =0.00013±0.006 e =0.00003±0.006 (after). Anattempttoquantifytherichnessofeachofthethreeclus- 1 2 ters is hampered by their close proximity. The original Abell Fig.4andFig.5showtheresultingpatternanddistributionof richnessclass (Abell1958)is determinedfromthe numberof correctedstellarellipticities. galaxies in the magnitude range m to m +2 (where m is 3 3 3 the magnitude of the third brightest cluster galaxy) contained 3.3. IsotropicPSFcorrection within a 1.5h−1 Mpc radius. In the case of the A901/902su- The isotropic correction recovers the lensing shear prior to percluster, the maximum separation between Abell 901a and circularizationbythePSF.FollowingLuppino&Kaiser(1997) Abell902isonly7.8arcmin,or∼850h−1kpcatz =0.16.We andHoekstraetal.(1998)weusethecorrectedgalaxyelliptic- can thereforeat best place a lower limit onthe Abellrichness itiesinconjunctionwiththe‘shearpolarizability’tensorP to classbyconsideringthecountswithina3.9arcminradius.This sh calculatetheshearestimate yields N = 34,27, and 20 galaxies for A901a, A901b, Abell γ =P−1e , (6) andA902,respectively,whichcorrespondstoanAbellrichness γ corr class0ineachcase. Moreinformative,however,istoconsider where the superclusteras a single system. In this case we can probe P∗ Pγ =Psh− Pss∗mhPsm. (7) tohfetheentcilruesRteArbpeollsi=tio1n.s5)ha−nd1 MfinpdcN(mAebaelslu=ri9n2g,fcroomrretshpeoncednintrgotiod Again,thestarredquantitiesrefertostellarproperties,andP∗ anAbellrichnessclassII. sh andP∗ aretreatedasscalarsequaltohalfthetraceofthere- spectivsmematrices. TocalculateP forthegalaxies,wefitP11 4.1. Colorselectionofearlytypegalaxies γ γ andP22asafunctionofsmoothingradiusr ,andinsertthefit- Dividingthecataloguespatiallyinto‘cluster’and‘field’re- γ g tedvalueintoequation(6)tocalculatetheshearmeasurement gions according to boundaries shown in Fig. 6, we plot the for each galaxy. Finally, we remove from the catalogue any R-band number counts in Fig. 7. A clear excess xof bright galaxies with a resulting |γ| > 2 due to noise. Note that this galaxies in the cluster region is visible. The B − R vs. R procedureactuallyyieldsthereducedshear,γ/(1−κ),butin color-magnitude diagrams for the two regions (Fig. 8) reveal thewide-field,weaklensinglimit(κ≪1,γ ≪1)inwhichwe a prominentsequenceof redgalaxieswithsmallscatter in the areworkingthisreducestotheshear,γ. regionoftheclusters. Wefitthisrelationaccordingto |B−R−(−0.0385R+2.21)|<0.1 (13) 4. CLUSTERPROPERTIES andwillusethiscolor-cuttoseparatethesuperclustermembers To identify the likely members of the supercluster, we first fromtheforegroundandbackgroundpopulationthroughoutthe spatially separate the catalogue of galaxies. We then use the wholefieldofview,usingtheentirecatalogueofgalaxies. resultingsamplestoisolatethetightsequenceofearly-typesu- Fig.9showstheresultofthiscolorcutwhenitisappliedto percluster galaxieson the B −R vs. R color-magnitudedia- the entire catalogue. The left panel shows the distribution of gram. all the bright (R < 20) galaxies in the field, and the promi- Fig.6showsthelocationsofalltheobjectsinthecatalogue nent clustering present is clearly visible. When the color-cut withinthe32.5′×32.5′ fieldofview. Thelargecirclesrepre- ofequation(13)isapplied,thestructureofthesuperclusteras sentanapertureofradius4.6arcminaroundeachcluster. The angularsizescalesas R(θ)=0.87D (z )(θ/1′)h−1Mpc (8) A L wherethedimensionlessangulardistance 1 z dz D (z)= , (9) A (1+z)Z [Ω (1+z)3+Ω ]1/2 m Λ z ≃ (10) (1+z)(1+3/4Ω z) m andthesecondlineisagoodapproximationtothelow-redshift angular distance in a spatially flat model with cosmological constant. For our supercluster at z = 0.16 this is relatively insensitivetocosmology,andyields R(θ)=0.11(θ/1′)h−1Mpc (11) =0.002(θ/1′′)h−1Mpc. (12) Thusthe radiiof the aperturesin Fig. 6 correspondto 0.5h−1 Mpcattheredshiftofthesupercluster. FIG. 7.—Number-magnitude relation for‘cluster’ and ‘field’ regions as Table5.2.1liststhecoordinateschosenasthecenterofeach definedinFig.6. Aclearexcessofbrightgalaxiesintheclusteraperturesis ofthethreeclusters:inAbell901aand901bthiscorresponded visibleuptoR∼22. AweaklensinganalysisoftheAbell901/902supercluster 9 FIG.6.—Divisionofcatalogueinto‘cluster’and‘field’regions.Eachdotrepresentsonegalaxyinthecatalogue,withtheareamaskedoutduetocontamination bybrightstarsanddiffractionspikesindicatedbytheblankrectangularregions. Thecirclesareaperturesofradius4.6arcmin(500h−1kpc)aroundtheoptical centerofeachclusteranddefinethe‘cluster’regionsusedtoisolatethecolor-magnitudesequenceofsuperclustergalaxies(cf.Fig.7andFig.8). 10 Grayetal. FIG. 8.—TheB−Rvs. Rcolor-magnitudediagramsforthe‘field’region(left)andthe‘cluster’region(right)asdefinedbytheboundariesinFig.6. The early-typeclustergalaxiesareclearlyvisibleasatightredsequenceintheright-handplot. Thecolorselectioncriteria(eq.[13])usedtoisolatethesupercluster galaxiesisshownbytheparallellines.DuetotherelativeshallownessoftheB-bandimagewithrespecttothedeepR-bandimage,approximatelyhalfthegalaxies ineachsamplearedetectedintheR-bandalone.ThelowerlimitontheresultingB−Rcolorforthesegalaxiesisindicatedbythethicklineandarrow.Thedashed lineatR=22servestofurthersubdividethepopulationsinto‘bright’and‘faint’samples. traced by the early-typegalaxies is revealed. The distribution theclusters: of these color-selected galaxies is shown in the right panel of N −N f = blue,cluster blue,background . (14) Fig.9.Thethreeclusters,sharingthesamecolor-magnitudere- b N −N total,cluster total,background lationfortheirearly-typegalaxies,areclearlypresent.Further- TheresultstabulatedinTable4.2confirmthatA902hasamuch more,thelargersuperclusterstructurebecomesclear(including higherf thantheothertwoclustersforavarietyofmagnitude galaxies stretching between the clusters, and an obvious sub- b limits, rangingashighasf = 0.58forR < 19. Weshallre- clump of supercluster galaxies approximately12 arcmin west b turntotheissueofvaryingclusterluminositieswhendiscussing ofAbell902). Thisexcessofsuperclustergalaxiesoutsidethe clusterM/Lratiosin§6. clusterboundariesdefinedbytheaperturesaboveaccountsfor asimilar(butmuchweaker)color-sequencealsovisibleinthe 5. WEAKSHEARANALYSIS color-magnitudediagramforthe‘field’sample(left-handside ofFig.8). 5.1. Selectionofbackgroundpopulation Theobservedtangentialdistortionofthebackgroundgalax- 4.2. Fractionofblueclustermembers ies allows us to reconstruct the dimensionless surface density AnexaminationoftheR-bandimage(Fig.1)revealsthatthe oftheinterveningmatter,κ=Σ/Σcrit,where three clusters are very different in morphologicalappearance. c2 D A901amostresemblesthetraditionalpictureofarelaxedclus- Σcrit = s (15) 4πGD D terdominatedbyacentralbrightellipticalgalaxy. A901balso d ds isthecriticalsurfacemassdensity. Toturntheobservedκinto containsa giantelliptical butthe nearbycluster galaxiestrace physicalquantitiesrequiresknowledgeoftheangulardiameter a more amorphous shape that appears to bleed into the mid- distancestothesourceandlens(D ,D ),andtherelativedis- dle of the supercluster (Fig. 9, left). This is at odds with the d s tancebetweenthetwo(D ). Inthecaseofweaklensingbya regular,compactX-rayemissiondetectedbySchindler(2000). ds clusterofgalaxies,thestrengthofthelensingsignalisgoverned Finally, A902 is the most irregularof the three, with no well- bytheredshiftdistributionofthebackgroundsources. Thisin- defined center. It is interesting, however, that Fig. 1 clearly formationcanbeexpressedbytheparameterβ,suchthat showsaprominentexcessofbright,diskygalaxiessurrounding thiscluster(absentfromthevicinitiesoftheothertwo). D β = ds , D ≥0. (16) To better understand the galaxy populations that make up (cid:28) D (cid:29) ds thesegalaxyclusters,wecalculatethefractionofbrightgalax- s zs The galaxies we will use for our mass reconstructions will ies too blue to survive the color selection but which may still be composed for the most part of faint (R > 22) galaxies or beclustermembers(presumablylate-types).Takinga4arcmin subsetsthereof.Itisofgreatimportance,therefore,thatweare radiusaperture,wecountthosegalaxieswithB−Rbluerthan able to determine the appropriate value of β to use. Fig. 10a theclustersequenceofequation(13)andcomparewiththeto- showsthedependenceoftheβ parameterontheredshiftofthe talnumberofgalaxieswithintheapertureforagivenmagnitude backgroundsources, for a lens at z = 0.16. Unlike lenses at limit. Wecorrectthesenumbersforbackgroundcontamination higherredshift(seeHoekstraetal.2000;Cloweetal.2000),the using the number density of similarly selected galaxies in the complementary‘field’region,takingintoaccounttheareaob- relativelylowredshiftofoursuperclustermeansthatforzs>∼1, β is relatively insensitive to the source redshift, regardless of scuredbythemask. thecosmologicalmodelused. Wethencalculatethefractionofbrightbluegalaxieswithin The CalTech Faint Galaxy Redshift Survey (CTFGRS; Co- henetal.2000)isasurveyinthedirectionoftheHubbleDeep

Description:
cal light traces the underlying dark matter, and how the clus- ter masses Abell 901b, on the other hand, is shown to exhibit very reg- ular and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.