ebook img

Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT PDF

6.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT

Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT 5 1 White Paper in Support of the Mission Concept of the 0 2 Large Observatory for X-ray Timing n a J 6 Authors 1 ] M.Orlandini1,V.Doroshenko2,L.Zampieri3,E.Bozzo4,A.Baykal5,P.Blay6, E M.Chernyakova7,R.Corbet8,A.D’Aì,T.Enoto9,16,C.Ferrigno4,M.Finger10, H D.Klochkov2,I.Kreykenbohm11,12,S.C.Inam13,P.Jenke14,J.-C.Leyder15,N.Masetti1, . h A.Manousakis16,T.Mihara17,B.Paul18,K.Postnov19,P.Reig20,P.Romano21,A.Santangelo2, p - N.Shakura19,R.Staubert2,J.M.Torrejón22,R.Walter4,J.Wilms11,12,C.Wilson-Hodge23 o r t s a 1 INAF/IASF-Bologna,viaGobetti101,I-40129Bologna,Italy 13DepartmentofElectricalandElectronicsEngineering,Baskent [ 2 InstitutfürAstronomieundAstrophysik,Sand1,72076Tübingen, University,Ankara06810,Turkey Germany 14UniversityofAlabamainHuntsville,301SparkmanDrive, 2 3 INAF-AstronomicalObservatoryofPadova,I-35122Padova,Italy Huntsville,Alabama,USA v 4 ISDC,UniversityofGeneva,Chemind’Écogia16,1290Versoix, 15ResearchFellowwithintheScienceOperationsDepartment,Eu- 7 Switzerland ropeanSpaceAgency(ESA),EuropeanSpaceAstronomyCentre 7 5 PhysicsDepartment,MiddleEastTechnicalUniversity,Ankara (ESAC),E-28691VillanuevadelaCañada,Madrid,Spain 7 06531,Turkey 16CentrumAstronomiczneim.M.Kopernika,Bartycka18,PL-00716 2 6 ImageProcessingLaboratoryUniversityofValenciaPOBOX Warszawa,Poland 0 22085,E-46071,Valencia,Spain 17MAXIteam,RIKEN,2-1Hirosawa,Wako,Saitama,351-0198, . 7 DublinInstituteforadvancedstudies,31FitzwilliamPlace,Dublin Japan 1 2,Ireland 18RamanResearchInstitute,Bangalore560080,India 0 8 UniversityofMaryland,BaltimoreCounty,Baltimore,MD21250, 19MoscowM.V.LomonosovStateUniversity,SternbergAstronomi- 5 USA calInstitute,119992Moscow,Russia 1 9 NASAGoddardSpaceFlightCenter,AstrophysicsScienceDivi- 20IESL,FoundationforResearchandTechnology-Hellas,GR-71110 : sion,Code662,Greenbelt,MD20771,USA Heraklion,Crete,Greece v 10NationalSpaceScienceandTechnologyCenter,320Sparkman 21INAF,IstitutodiAstrofisicaSpazialeeFisicaCosmica–Palermo, i Drive,Huntsville,AL,USA viaU.LaMalfa153,90146Palermo,Italy X 11Dr.KarlRemeis-SternwarteBamberg,Sternwartstrasse7,96049 22InstitutoUniversitariodeFísicaAplicadaalasCienciasylasTec- r Bamberg,Germany nologías,UniversidaddeAlicante,E03080Alicante,Spain a 12ErlangenCentreforAstroparticlePhysics,Erwin-Rommel-Str.1, 23AstrophysicsOffice,ZP12,NASAMarshallSpaceFlightCenter, 91058Erlangen,Germany Huntsville,AL35812,USA ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT Preamble TheLargeObservatoryforX-rayTiming,LOFT,isdesignedtoperformfastX-raytimingandspectroscopy with uniquely large throughput (Feroci et al., 2014). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of generalrelativity? ThesegoalsareelaboratedinthemissionYellowBook(http://sci.esa.int/loft/ 53447-loft-yellow-book/)describingtheLOFT missionasproposedinM3,whichcloselyresembles theLOFT missionnowbeingproposedforM4. TheextensiveassessmentstudyofLOFT asESA’sM3missioncandidatedemonstratesthehighlevel ofmaturityandthetechnicalfeasibilityofthemission,aswellasthescientificimportanceofitsunique core science goals. For this reason, the LOFT development has been continued, aiming at the new M4 launch opportunity, for which the M3 science goals have been confirmed. The unprecedentedly large effectivearea,largegrasp,andspectroscopiccapabilitiesofLOFT’sinstrumentsmakethemissioncapable of state-of-the-art science not only for its core science case, but also for many other open questions in astrophysics. LOFT’s primary instrument is the Large Area Detector (LAD), a 8.5m2 instrument operating in the 2–30keVenergyrange,whichwillrevolutionisestudiesofGalacticandextragalacticX-raysourcesdown totheirfundamentaltimescales. ThemissionalsofeaturesaWideFieldMonitor(WFM),whichinthe 2–50keVrangesimultaneouslyobservesmorethanathirdoftheskyatanytime,detectingobjectsdownto mCrabfluxesandprovidingdatawithexcellenttimingandspectralresolution. Additionally,themissionis equippedwithanon-boardalertsystemforthedetectionandrapidbroadcastingtothegroundofcelestial brightandfastoutburstsofX-rays(particularly,Gamma-rayBursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatoryinavarietyofastrophysicalfieldsinadditiontothecorescience. Page2of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT 1 Summary HighmassX-raybinaries(HMXBs)constituteasizeablefractionofthebrightX-raysourcesintheMilkyWay andinothernearbygalaxies. Intheseobjects,thebulkoftheX-rayemissionisduetotheaccretionofmaterial lostbyamassivecompanion(&10 M )ontoeitheraneutronstar(NS)orablackhole(BH).Dependingmainly (cid:12) onthenatureofthecompanion,accretioncanbemediatedbyadiskorthroughastellarwind. Supergiant,hypergiant,andWolf-Rayetstarshavethedensest,fastest,andhighlystructuredwinds. These windscangiverisetoanextremeX-rayvariabilitywhenaccretedontoacompactobject. Accretionfromthe milder winds of moderately massive red giants (&1 M ) also produces a substantial X-ray variability. Our (cid:12) understandingoftherelationbetweentheX-rayvariabilityandstellarwindpropertieshasbeenlimitedsofarby thelackofX-rayfacilitiesfeaturingsimultaneouslyalargecollectingareaandgoodenergyandtimingresolution. Accuratespectralandtimingvariabilitystudiesofwind-fedbinariesrequire,atpresent,longintegrationtimes, leavingthestudyattypicaldynamicaltosub-dynamicaltimescaleslargelyunexplored. YoungNSs(typicallyfew106 yr)hostedinHMXBsareknowntopossessstrongmagneticfields(&1012 G) whichchanneltheaccretingmaterialfromdistancesaslargeas 103-104 kmdowntotheirsurfaces. Thisleads ∼ totheformationofextendedaccretioncolumnsandcomplexpulseprofileswitharemarkableenergydependence. Ourunderstandingofthephysicsofthis“magnetosphericaccretion”hasbeenhamperedsofarbytheinability to reveal changes in the source spectral and timing properties within integration times shorter than a single sourcepulseperiod. Gainingaccesstosuchshortintegrationtimeswillpermitinvestigationofthephysicsofthe accretioncolumns,mapthetopologyoftheNSmagneticfield,andultimatelyrevealthestateofmatterunder suchextremeconditions. Thedynamicsofplasmaatthediskinnerboundaryofdisk-fedNSHMXBswasalsopoorlyinvestigatedso far,asinthesesystemsthediskistruncatedatsizeabledistancesfromthecompactobject(&1000km)andthe timing/spectralsignaturesproducedbythemovingplasmaareweaklydetectable. Asignificantimprovementin thecollectingareasofcurrentlyavailableX-rayfacilitiesisneededtoopen-upstudiesinthisfieldandtransform currenttentativedetectionsindiagnostictools. Largeaccretiontorques,thatalternativelyslow-downorspin-uptheNS,havebeenmeasuredonbothwindand disk-fedHMXBsontimescalesthatrangefromyearstodecades. Thesetorquesandtheirreversalsresultfrom theyetunknowncouplingbetweentheNSmagneticfieldandtheaccretingmaterial. Severalmodelsarestill debated. PursuingthelongtermmonitoringofHMXBsisthusmandatorytosecurecontinuityinthesestudies. Ultra-luminousX-raysources(ULXs)arealsooftenfoundinyoungstellarenvironments(see,e.g.,Liuetal., 2007;Griséetal.,2008,2011)andinatleasttwocasestheyhavebeendirectlyassociatedwithHMXBs(Liu et al., 2013; Motch et al., 2014). These sources are a challenge of modern X-ray astronomy, as the physical mechanismsproducingtheirunusuallyhighX-rayluminosityisstilldebated. Thisispartlyduetothelackof highSNRX-raytiming/spectraldata. Thankstotheuniquecombinationofcollectingareaandenergyresolutioninawideenergyband(2-50keV), togetherwithanunprecedentedlargefield-of-viewimagingmorethan1/3oftheskyatonce,theinstruments on-boardLOFT (Ferocietal.,2014)willdramaticallyopen-upperspectivesforresearchinallabovementioned fields. Inparticular: the LAD will grant for the first time access to accurate spectral and timing variability studies on • dynamicalandsub-dynamicaltimescalesforwind-fedanddisk-fedHMXBs. Thiswillovercomethe longstandingdifficultyindisentanglingphysicalprocessesoccurringinstellarwinds,accretioncolumns, andthestronglymagnetizedenvironmentsofyoungpulsars. LADobservationswillmapthemagnetic fieldtopologyofyoungNSsandinvestigatetheirmicrosecondvariability. Detailedorbitalmonitoring observationswillbepossibleforalargenumberofγ-ray-loudandγ-ray-quiteHMXBs,astheLADcan measurechangesintheiremissionpropertieswithinintegrationtimesasshortas1-10%comparedto Page3of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT thoserequiredwiththecurrentlyandpastX-rayfacilities. UnderstandingthetimingpropertiesandsearchingforperiodicitiesinbrightULXs. TheLADwillbe • abletoperformadetailedtiminganalysisofalimitedbutnon-negligiblegroupofbright( afewtensof ≥ mCrab)sources. Linkingtimingpropertiestoothersourceproperties(e.g. spectral/fluxvariability)orto eachother(highvs. lowfrequencyQPOs)isofprimaryscientificimportancetounderstandhowtheycan beproducedinanon-standardaccretionregime,acrucialsteptousethemforestimatingBHmasses. theWFMwillpromptlydetectfastflaresandtheonsetofoutburstfromHMXBs,aswellasdiscovernew • transientsourcesinthisclassandnearbyULXs( 4Mpc). Itwillbepossibletomonitorcontinuously ≤ a large fraction of bright accreting HMXBs, providing for them data with good spectral and timing resolutiontostudytheirlongtermvariabilityandaccretiontorques. Synergiesareenvisagedbetween LOFT and the Square Kilometer Array to jointly monitor ULX radio/X-ray variability (Wolter et al. 2014). 2 Probing stellar winds in wind-fed binaries 2.1 Transient structures Massivestarsgeneratedensefastoutflowsthattriggerstarformationanddrivethechemicalenrichmentand evolutionofGalaxies(Kudritzki,2002). Theamountofmasslostthroughtheemissionofthesewindshasa large impact on the evolution of the star (see, e.g., Meszaros & Rees, 2014, for a recent review). In the past decades,observationalevidencehasbeengrowingthatwindsofmassivestarsarepopulatedbydense“clumps”. Thepresenceofthesestructuresaffectthemasslossratesderivedfromthestudyofstellarwinds,thusleadingto uncertaintiesinourunderstandingoftheirevolutionarypaths(Pulsetal.,2008). HMXBswerelongconsideredaninterestingpossibilitytoprobeclumpiness(see,e.g.,Sakoetal.,2003,and referencestherein). AsubstantialfractionofthesesystemshostacompactobjectorbitinganO-Bsupergiant andaccretingmaterialfromthestellarwind(see,e.g.,Chaty,2013;Paul&Naik,2011,forrecentreviews). As theX-raysreleasedbytheaccretionprocesscantracethemassinflowratearoundthecompactobject,suchan objectprovidesanaturalprobetomeasureinsituthephysicalpropertiesofthemassivestarwindandclumps. Theso-called“SupergiantFastX-rayTransients”(SFXTs)showedsofarthemostconvincingevidenceforthe accretionoflargeclumpsontothecompactobject(in’tZand,2005;Walter&ZuritaHeras,2007). InX-rays, theroleofclumpsistwo-fold. Clumpspassinginfrontofthecompactobjectcause(partial)obscurationofthe X-raysource,anddisplaythesignaturesofphotoelectricabsorptionandphoto-ionization(D’Aíetal.,2007; Rampyetal.,2009). Inaddition,clumpscanleadtotemporarilyincreasedaccretionandX-rayflares(Ducci etal.,2009;Oskinovaetal.,2012). Anumberofhours-longflaresdisplayedbytheSFXTscouldbeconvincingly associatedtotheaccretionofdenseclumps,themoststrikingcasebeingthatofamoderatelybrightflarefrom IGRJ18410 0535observedwithXMM-Newton(Bozzoetal.,2011). WiththeEpic-pncamera,integrationtimes − ofseveralhundredstothousandssecondswereneededtogetaroughestimateoftheclumppropertiesandan averagepictureoftheclumpaccretionprocess. Similar observations performed with the LAD on-board LOFT will dramatically improve our present un- derstanding of clumpy wind accretion and winds in massive stars in general. By taking advantage of the unprecedentedlylargeeffectiveareaofthisinstrument,itwillbepossibletostudyspectralandintensity variability of the source on time scales as short as few to tens of seconds. This will permit a study of the dynamicsoftheclumpaccretionprocessindetailandobtainmorereliableestimatesoftheclumpmass,radius, density,velocity,andphoto-ionizationstate. Thelattercanbeprobedalsobyrevealingchangesinthecentroid energyofthefluorescentironlinebetween6.4-6.6keV,commonlyproducedinwind-fedbinaryasaconsequence oftheX-rayirradiationofthewindandclumpmaterial(see,e.g.,Torrejónetal.,2010,forarecentreview). Page4of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT 1− 4 s 2− 3 Figure1:Left:Sketchofthe m g c 2 accretion of a clump (cred- er 1 its: ESA). Right: Changes 10− 0 in the flux and spectral pa- 0 ,1 1 rameters during the flare Fx 2.4 recorded by XMM-Newton 2.2 fromIGRJ18410 0535. Vi- 2.0 − 1.8 XMM olet boxes represent the Γ 1.6 measurementsobtainedwith 1.4 XMM-Newton, while black 1.2 LAD 1.0 points represent values ob- tained from the simulated 50 LADspectrawithexposure 220 40 timesasshortas50s(uncer- 1×30 tainties are sometimes too H N 20 small to be visible on the 10 scale of the figure). The 6.8 LADsensitivitytochanges 6.7 in the centroid energy of 6.6 thefluorescentironline(6.4- EFe6.5 6.6keV)isaddressedinthe 6.4 bottompanel. 6.3 6.2 4000 6000 8000 10000 12000 14000 16000 Time, s BasedonthespectralparametersmeasuredinXMM-NewtonobservationofIGRJ18410 0535,wesimulated − severalLADspectraoverthecourseoftheflarebyusingintegrationtimesasshortas50sandinterpolating thespectralpropertiesofthesourcebetweentheindividuallyavailableXMM-Newtonpoints. Asisshownin Fig.1,duringsimilarevents,theLADisabletorevealspectralchangesinthecontinuumaswellasintheiron lineenergywithabetteraccuracythancurrentfacilitiesbyusingintegrationtimesafactorof 10-100shorter. ∼ Similarstudieswillbepossiblewithothersub-classesofwind-fedX-raybinariesaswell,testingwindsand clumpsparametersindifferenttypesofstars. 2.1.1 ThecaseofsymbioticX-raybinaries Brightwind-accretingX-raybinariescanalsobefoundamonglowmassX-raybinaries(LMXBs),inparticular intheso-calledSymbioticX-raybinaries(SyXBs). Theseareinteractingsystemsinwhichthecompactobject movesinawideorbit(periodsmonthstoyears)aroundaredgiantandaccretesmaterialfromitsslowanddense wind(Masettietal.,2006;Nespolietal.,2010;Hynesetal.,2014;Bahramianetal.,2014). Observationally, SyXBs are characterized by a highly variable X-ray emission, displaying bright flares similar to those of other wind-fed X-ray binaries (Masetti et al., 2007). X-ray pulsations are unusually slow, but demonstrate unambiguouslythepresenceofaccretingNSsinthesesources(spinperiodsrangefromhundredsto 18400s; ∼ Corbetetal.,2008). AboutadozenSyXBsareknowntodate,andthemajorityofthesesystemsarecharacterized byaverageX-rayfluxesof10 11-10 10 ergcm 2s 1. − − − − LADobservationscanthusbecarriedoutasinthecaseofHMXBstoprobethepropertiesofthepoorly known winds from red giants (which are dust rather than radiatively accelerated) and probe the physics of Page5of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT Figure2: Thequasi-sphericalaccretionmodel isparticularlywellsuitedtowindaccretingsys- teminwhichthemassaccretionrateislow(fig- urefromEnotoetal.,2014).Inthismodelahot quasi-staticshellformsabovetheNSmagneto- sphereandplasmaentrythroughthemagnetic fieldlinesisregulatedbyinefficientradiative plasmacoolingorComptoncooling(Shakura etal.,2013). Theapplicationofthismodelto thecaseof3A1954+319,aSyXBprototype, wouldsolvetheproblemofthepeculiarlylarge valueofthemagneticfieldabovethemagnetar range(1016G),requiredbythestandardwind accretion theory (see Enoto et al., 2014, and references therein). We note that the quasi- spherical accretion model is also applicable tootherclassesofwind-fedsources(e.g.,the SFXTs),andthusabetterunderstandingofthis accretionregimeisofwideinterest(Shakura etal.,2014,2013). windaccretionfromslowflowsatlowmasslossrates(<10 10 M yr 1 comparedtothetypical10 5-10 6 M − − − − yr 1 observed in supergiant stars). The latter are particularly int(cid:12)eresting to test the quasi-spherical accretion(cid:12) − model onto magnetized NSs (see Fig. 2; Davies et al., 1979; Ikhsanov, 2007; Shakura et al., 2012), and the X-rayvariabilitymodelviaredgiantwindaccretionsuggestedbyFilippovaetal.(2014). Thecontinuoussky monitoring performed with the WFM will increase the number of SyXBs by, e.g., discovering long period pulsations(seeSect.4). 2.1.2 ThecaseofwindcollidingbinariesandEta-Carinae Another interesting class of binaries for which LOFT observations could help probing the properties of star windsisthatofthecolliding“windbinaries”(see,e.g.,Stevensetal.,1992). Amongthese,weconsiderbelow specificallythecase ofηCar, anearbymassivebinary system(distanceof2.3kpc)hosting aluminousblue variableandaWolf-Rayetoralate-typenitrogen-richOstar,ina5.5yrsorbit. Thesourceishighlyabsorbed, embeddedinathickcocoonduetoepisodesofmassiveejections(see,e.g.,Davidson&Humphreys,1997). The X-rayemissionabove2keVisdominatedbyapoint-likeopticallythinthermalcomponentwithatemperatureof 4keVwhichismostprobablyduetothecollisionbetweenthetwostellarwinds. Regularweeklymonitoring ∼ bytheRXTEPCAhasrevealedaperiodicvariabilitylinkedtotheorbitalmotionwithamaximumatperiastron lastingforafewmonths,followedbyastrong3-monthlongsuppressionofsoftX-rayemission. Aphaseknown asdeepminimumseesthealmostcompletesuppressionofthesoftX-raycomponent,possiblyduetooccultation bythestellarphotosphere(seeCorcoran,2005,andreferencestherein). Shortertermvariabilityisalsopresent anditsoriginmightbelinkedtowindclumpiness(Moffat&Corcoran,2009). Anexcesspower-lawemission hasbeenreportedabove 10keV(Viottietal.,2004;Sekiguchietal.,2009;Hamaguchietal.,2014;Leyder ∼ etal.,2010)withanindexof1-1.8anda10-50keVfluxof1-2 10 11erg/s/cm 2. Thiscomponentisthoughtto − − × extenduptotheGeVrange,whereitcanbematchedtotheFERMIdetection(Farnieretal.,2011);itmightbe interpretedasasignatureofparticleaccelerationattheshockbetweenthewinds,butitsoriginisdebated. LOFT willbeabletoperformbothmonitoringanddetailedX-rayspectralanalysisowingtothelargeeffective areaoftheLAD.Wehavesimulateda3kslongsnapshotassumingthespectralparametersdeterminedwith Suzaku(Hamaguchietal.,2014)fortenorbitalphaseswithaconstantpower-lawemissionalongtheorbitbut Page6of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT 1024 2m)− (cNH1023 MNS=1.5 Mfl MNS=1.8 Mfl MNS=1.95 Mfl LOFT/WFM LOFT/LAD XMM 1022 0.0 0.2 0.4 0.6 0.8 1.0 φ - Phase Figure 3: Left: An example of hydrodynamical simulations from Manousakis et al. (2012). The wind of the primary isstronglyperturbedbythegravitationalfieldoftheNS.AdensestreamofmattertrailstheNSandabsorbsitsX-ray emission. Right: AbsorptioncolumndensityasafunctionoftheorbitalphaseandNSmass,asmeasuredinthecaseof IGRJ17252 3616(averageX-rayfluxofF =5.5 10 11ergcm 2s 1inthe3-30keVenergyrange;Manousakis&Walter, x − − − − × 2011). ThegreenpointsaretheoriginalXMM-Newtonmeasurements(&10ksexposureforeachpoint),whileredpoints representsthesimulatedLADobservationsbyusingonly1ksofexposure. Wealsoshowtheresultsobtainedfromthe simulatedWFMspectra(blackpoints)forabrightersourcewithafluxsimilartoVelaX-1(F =5.5 10 9ergcm 2s 1). x − − − × TheWFMachieves,forsuchfluxes,agoodaccuracyinthemeasurementofthespectralparametersalreadyin.20ks. variablesoftX-rayemission. Wehaveverifiedthatthepower-lawcanbefirmlydetectedevenatthesoftX-ray maximum,anddeterminingtheindexmorepreciselythanSuzakurequiresonly<10%ofitsobservingtime. If the LAD instrument observes η Car every few weeks during 3 (satellite) revolutions, it will help understand themysteriousnatureofthehardX-rayemission,anditwillallowtosearchforitsvariability. ThehardX-ray emissioncanbeusedtoconstrainthecharacteristicsoftheparticleaccelerationinthecollidingwindregion, such as the particle density and the magnetic field. These monitoring observations could also be useful to quantify the mass loss rates of the stellar winds and their clumped nature, by a detailed study of the relevantspectral/variabilityparameters(seealsoSect.2). Weremarkthatthiscannotbeeasilydoneatother wavelengthsastheradiationisheavilyabsorbed. 2.2 Persistent structures Many wind-fed HMXBs display prominent variations of their average X-ray spectral properties at different orbitalphases. ThisvariabilityoccursonamuchlongertimescalewithrespecttothatdiscussedinSect.2.1and providedifferentimportantinsightsinpersistentstructuresthatformaroundthecompactobjectwhenthestellar windisfocusedbyitsgravitationalfield(Blondinetal.,1991). RecentlyManousakis&Walter(2011)investigatedthevariationsoftheX-rayemissionpropertiesfromthe wind-accretingsupergiantX-raybinaryIGRJ17252 3616. ByusingXMM-Newtonobservations,theseauthors − foundthattheabsorbingcolumndensityhasapeculiardependenceontheorbitalphase(seeFig.3). Manousakis etal.(2012)usedhydrodynamicsimulationstoshowthattheincreaseoftheabsorptioncolumndensityismost likelycausedbyanaccretionwakethatformaroundtheNS.Thephaseprofileoftheabsorptioncolumndensity could be well reproduced in the simulation, suggesting that the mass of the compact object plays a key role. If extended to other wind accreting systems, these studies could provide a new independent way to measure NS masses. A first attempt to extend the applicability of this study to the supergiant X-ray binary prototype VelaX-1waspresentedbyDoroshenkoetal.(2013). However,formostwind-fedbinaries,asufficientlyaccurate Page7of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT Figure4: An “off-state” observed from the sourceGX301-2withtheRXTE/PCA(Gög˘üs¸ 0.10 et al., 2011) and a simulation of LOFT capa- LOFT WFM RXTE PCA 2.6 bilities to study similar events. The grey area LOFT LAD representsthesourcelightcurveasobservedby 0.08 thePCA.Theblueboxesshowtheaccuracyand 2.4 integrationtimeofthesourcespectralslopemea- s suredbythePCA(Γisthepower-lawspectral 2.2 0.06cts/ index). The black points show how the LAD e, Γ at cinouglrdeabteerudseetdaitlobyfotlalkowingthaedvsapnetcatgraelovfairtisatliaorgnes 2.0 0.04WFM r collectingareaandgoodspectralresolution(we simulatedLADspectrain50sintegrationtimes 1.8 0.02 andinterpolatedthephotonindexvaluesamong the PCA measurements). The red points and 1.6 thecorrespondingerror-barsrepresenttheWFM 0.00 lightcurveofthesourcesimulatedwithatime- 1000 2000 3000 4000 5000 6000 7000 8000 9000 Time, s binof685s(rightscale). Notethatdespitethe significantdropinflux, thesourcecanstillbe detectedbytheWFMduringtheoff-state. monitoringoftheabsorptioncolumndensity(aswellasotherrelevantspectralparameters)isnotyetavailable assuchobservationsrequiresrelativelylongexposuretimeswiththecurrentX-rayfacilities. ThelargeeffectiveareaandgoodbroadbandcoverageoftheLADmakeitperfectlysuitedtocarryoutthese investigations,astherequiredmeasurementaccuracycanbeobtainedwithmuchshortertimescalescompared to,e.g.,XMM-NewtonorMAXI(see,e.g.,Islam&Paul,2014,forarecentstudyontheorbitalphaseresolved spectroscopyofGX301-2). InFig.3wepresentacomparisonoftheresultsobtainedforIGRJ17252 3616 − withtheEpic-pnon-boardXMM-NewtonandasimulationofthesameobservationswiththeLAD.TheLAD can achieve the same accuracy in the spectral parameters of the source by using .1/10 of the Epic-pn exposuretime(notethatforthemajorityofthesystemsofinterest NH&1022 cm−2). Forbrightersourceslike VelaX-1,WFMdatawouldalsobeabletoprovidetherequiredlong-termspectroscopicinformation,without theneedofdedicatedLADcampaigns(seeFig.3). 2.3 Probing the origin of off-states in wind-fed binaries An intriguing and poorly understood phenomenon in wind-fed binaries is that of the so-called “off-states” (Kreykenbohmetal.,2008;Gög˘üs¸ etal.,2011;Doroshenkoetal.,2012). Thesearerapid(fewseconds)and sporadic drops of the source X-ray flux, lasting typically several pulsation cycles, which origin is currently unknown. The study of such events has so far been hampered by their short duration, which requires long monitoringobservationstobediscoveredindifferentsources,andtheinabilitytoobtainsystematicallyaccurate spectralandtiminginformationduringtheingressandegressphases(Doroshenkoetal.,2011). Differentspectral changeswouldbeexpectediftheoff-statesaredueto: (i)accretionfromregionscharacterizedbyararefied stellar wind (i.e., the intra-clump medium; Kreykenbohm et al., 2008; Oskinova et al., 2012); (ii) switches inmagnetosphericaccretionmodes(Bozzoetal.,2008;Doroshenkoetal.,2011);(iii)switchesbetweenthe Comptonandradiativelyinefficientcoolingmodesinthesettlingaccretionregime(Shakuraetal.,2013);(iv) hydrodynamicinstabilitiesclosetothecompactobjectmagnetosphere(Manousakis&Walter,2014). Changes inthesourcepowerspectrumduringtheingressandegressphasescouldalsohelprevealingswitchesbetween differentaccretionmodesordynamicalconfigurationoftheaccretionflow. ThelargeeffectiveareaoftheLADwillprovideforthefirsttimedetailedspectralandtiminginforma- Page8of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT Figure 5: Example of the LAD capability to reconstruct the spectral shape of an accreting X-ray pulsar in very short integrationtimes. SimulationswereperformedusingtheresultsofaBeppoSAXobservationofVelaX-1(Orlandinietal., 1998). Eachcurvegivesthesignificanceofaspectralparameter(definedastheratiobetweenthebestfitparameterand itsuncertainty)asafunctionoftheexposuretime. Thecurvesarecolorcodedaccordingthetheassumedflux(black: 500mCrab,red: 150mCrab,green: 15mCrab). Middle: SameasbeforebutshowingtheLADcapabilitiesinthecase of4U0115+634. ForthissourcewealsoshowthesignificanceoftheCRSFdetectionat12.8keVusingthespectral model proposed by (Santangelo et al., 1999). “Norm” is the CRSF normalization and “Sigma” its width. We do not plotthesignificanceoftheCRSFcentroidenergy,asitisalwaysdeterminedataveryhighsignificance. TheLADcan indeedmeasuretheCRSFcentroidenergyatasignificancelevelof100,20,and3σforfluxesof500,150,and15mCrab, respectivelyinonly0.1s. Right: Sameastheleftpanel, butforAthena/WFI.Thisshowthatsimilarstudiesareonly possibleiftheLADlargecollectingareaisavailable. OthercurrentlyplannedX-rayinstrumentswouldneedtoolong exposuretimestoachieveaccuratespectralmeasurements. tionwithinintegrationtimesshorterthantheoff-stateingressesandegresses. ThisisillustratedinFig.4 by using the example of the off-states in GX301-2 discovered with the RXTE/PCA (Gög˘üs¸ et al., 2011). In thefigurewealsoshowthatoff-statescanbeeasilydetectedwiththeWFM,bytakingadvantageofitsgood sensitivityandtheavailabilityoflongtermmonitoringobservationsofmanywind-fedbinariesduringthecourse ofthemission(seealsoSect.4). 3 Probing the physics of magnetospheric accretion 3.1 Pulse phase resolved spectroscopy and cyclotron features ClosetothemagneticpolesofayoungNS,X-rayphotonsareforcedtointeractwiththemagneticfieldbefore beingabletoescapeinthedirectionoftheobserver. Asthequantizationoftheelectronmotioninthedirection perpendiculartothemagneticfieldhastheconsequencethatthescatteringcrosssectionsofX-raysareanisotropic and energy dependent, X-ray photons with frequencies close to the gyro-magnetic (Larmor) frequency are scatteredoutofthelineofsight,givingriseto“cyclotronresonantscatteringfeatures”(CRSFs). Thesefeatures are often observed in the X-ray spectra of highly magnetized NSs and provide a unique tool to measure the compact object magnetic field strength (Canuto & Ventura, 1977). Because the CRSF parameters strongly depend on the viewing angle, a spectral analysis as a function of the pulse phase (pulse phase spectroscopy, PPS)canbeusedtoreconstructthetopologyoftheNSmagneticfieldandprobetheconditionofmatterclose totheemittingregions. SuchstudieshavebeenhamperedsofarbythefactthatPPScouldonlybeperformed by averaging the source spectrum at a given phase over many individual pulses. This provides information onlyontheaveragedlargescalemagneticfieldconfigurationandspectralformationmechanisms,limitingthe development of theoretical models (see, e.g., Schönherr et al., 2014, for a recent review). These topics thus Page9of21 ProbingstellarwindsandaccretionphysicsinHMXBsandULXswithLOFT Figure6:CyclotronlineenergyE asafunctionoflumi- 31 cyc nosityinV0332+53. Measurementsathighluminosities 30 (black open circles) are from Tsygankov et al. (2010). 29 LAD measurements are simulated by carrying out PPS onone20ks-longobservationatlowerfluxes(redfilled 28 cbiarrcsleasr)easnmdaalnleorththearnatthheigmhearrkfleurxseisze(girneethnissqcuaasree)s.;LerAroDr E,keVcyc27 observationsathigherandlowerfluxesare(clearly)also 26 doablebutnotshownhere. Atransitionbetweendifferent 25 V0332+53,Tsygankovetal. (2010) E -fluxdependenciescanbeprobedforthefirsttimeon cyc LOFT/LAD20ksatlowflux awiderangeofluminosities. 24 LOFT/LAD20ksatmoderateflux 23 100 101 LX/(1037erg/s) remain highly debated (Staubert et al., 2007; Schönherr et al., 2007; Nishimura, 2011; Becker et al., 2012; Poutanenetal.,2013). ThehighthroughputoftheLADwillbeableforthefirsttimetoaccuratelyconstrainspectralproper- ties of accreting X-ray pulsars by using integration times much shorter than a single NS pulse. This is illustratedinFig.5fortwoX-raypulsarsprototypes: VelaX-1and4U0115+634. Itisworthmentioningthat, giventheoptimalresponseandeffectiveareaoftheLADat6-8keV,PPSanalyseswillnotbelimitedtoCRSFs, butnaturallyencompassanyspectralfeature,e.g.,thefluorescenceiron-Kemissionline(simulationsshowthat thetypicalironlineobservedinVelaX-1canbeconstrainedbytheLADwithanintegrationtime.10sec). TheLADwillalsobeabletoperformPPSanalysesatlowluminosities,aregimeneverinvestigatedsofar due to the lack of simultaneous broad-band energy coverage, energy resolution, and collecting area of past andpresentX-rayfacilities. Especiallyintriguingisthevariationofthecyclotronlineenergywithluminosity observedinseveralsources(see,e.g.,Klochkovetal.,2011b). Suchavariationmostprobablyreflectsavertical displacementoftheemittingregionintheinhomogeneousmagneticfieldoftheNS,andcouldbeinvestigated sofaronlyatluminosities&1037ergs 1 withrelativelylongpointedRXTEandINTEGRALobservations(see, − e.g.,Klochkovetal.,2011a,andreferencestherein). Atluminositiesbelow 1037ergs 1,thepolaremission − ∼ regionsoftheNSwouldbeexpectedtoswitchtoadifferentconfigurationleadingtoadifferentdependenceof thecyclotronlineenergy E onflux(Beckeretal.,2012). SimulationsinFig.6showthattheLADwillbe cyc abletomeasurespectralparametersofthecontinuumofaccretingpulsarsathighsignificance(&5σ)in lessthanafew100sevenatluminositiesaslowasfewtensofmCrab. 3.2 Inside the NS magnetosphere: microsecond variability in HMXBs In wind-accreting NSs, the plasma is believed to penetrate the compact object magnetic barrier through the Rayleigh-Taylorinstability,intheformofaccretingblobs(Arons&Lea,1976;Shakuraetal.,2012). These blobs,afterashortradialinfall,arechanneledbythemagneticfieldlinestowardtheNSpolarcaps,wherethey releasetheirkineticenergyintoX-rayradiation. Acertain“granularity”intheobservedX-rayemissionisthus expected(Orlandini&Morfill,1992). Itwasshownthattheenergyreleaseofeachshotoccursonmicrosecond timescales(Orlandini&Boldt,1993). ThepassageofthemicrosecondpulsesthroughtheNSmagnetosphere willtendtobroadenthem,butphotonsmovinginadirectionparalleltothatofthemagneticfieldandenergies muchlessthanthecyclotronenergywouldemergeunscattered(becausetheirscatteringcoefficientaredrastically reduced;Herold,1979). FromthetypicalcyclotronresonanceenergiesobservedinXRPs,itisexpectedthatfor E . 5keV,µspulsesfromthesurfaceofNSsshouldbedetectablerelativelyundistorted. Thetechniqueweareplanningtousetodetectsuchµsvariabilityismultipledetectorcoincidence. The LAD is therefore the best suited instrument for this kind of studies, given its time resolution and high number of independent detection modules, N . The presence of events at µs time scales can be probed by d Page10of21

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.