DRAFTVERSIONJANUARY17,2011 PreprinttypesetusingLATEXstyleemulateapjv.08/22/09 PROBINGREIONIZATIONWITHINTENSITYMAPPINGOFMOLECULARANDFINESTRUCTURELINES YANGONG1,ASANTHACOORAY1,MARTAB.SILVA2,MARIOG.SANTOS2,PHILLIPLUBIN3 DraftversionJanuary17,2011 ABSTRACT We propose observations of the molecular gas distribution during the era of reionization. At z 6 to 8, 12CO(J=1- 0)lineintensityresultsinameanbrightnesstemperatureofabout0.5µKwithrmsfluctu∼ationsof 1 0.1µKat1to10Mpcspatialscales,correspondingto30arcminuteangularscales. Thisintensityfluctuations 1 can be mapped with an interferometer, similar to existing and planned 21-cm background experiments, but 0 operating at 12 to 17 GHz. We discuss the feasibility of detecting the cross-correlation between HI and 2 ∼ CO moleculargassince sucha cross-correlationhastheadvantagethatitwillbe independentofsystematics n andmostforegroundsin eachofthe 21-cmandCO(1- 0)line experiments. Additionalinstrumentstunedto a higher-ordertransitionsof the CO moleculeor an instrumentoperatingwith highspectral resolutionat mm- J wavelengths targeting 158 µm CII could further improve the reionization studies with molecular gas. The 4 combined21-cmandCOlineobservationshasthepotentialtoestablishtherelativedistributionofgasinthe 1 inter-galactic medium and molecular gas that are clumped in individual first-light galaxies that are closely connectedtotheformationofmassivestarsinthesegalaxies. ] O Subjectheadings:cosmology:theory—diffuseradiation C h. 1. INTRODUCTION Intermsofpotentialspectrallinesofinterest,thelineinten- p Recentlytherehasbeenagreatdealofinterestintheevolu- sityoftheJ=1to0transitionof12COhasbeenusedasaway - tionoftheintergalacticmediumathighredshifts(z>6)and toestablishthegasmassofstar-forminggalaxiesbothatlow o (e.g.,Downes&Solomon1998)andmedium(e.g.,Greveet specifically,thereionizationhistoryoftheUniverse. Mostof r al.2005)redshifts.IndividualCOlineobservationsnowexist t thisinterestissparkedbyexistingmulti-wavelengthobserva- s tionsthatsuggestacomplexreionizationhistory,withastrong outtoz=5.3(e.g.,Riechersetal. 2010),whichissignificant a giventhatthehighest21-cmlineemissionfromagalaxycur- [ possibilityforextendedandhighlyinhomogeneousperiodof reionization. Observationsofthe21-cmspin-fliplineofneu- rentlymeasuredisatzof0.24(Lahetal. 2007;seeChanget 1 tralhydrogenare currentlyconsideredto be one ofthe most al.2010for21-cmintensityvariationsofthekindwepropose v promisingprobesoftheepochofreionization(e.g.,Madauet atz 0.9). InadditiontotheCOlines, wealsofindthatthe ∼ 2 al. 1997;Loeb&Zaldarriaga2004;Gnedin&Shaver2004). finestructureCIIline, withobservationsin themmrangeof 9 thespectrum,couldbeastrongprobeofreionizaion. Giventhe lineemission, leadingto afrequencyselectionfor 8 ThisLetterisorganizedasfollows: inthenextSection,we observations,the21cmdataprovidesatomographicviewof 2 outlinethecalculationrelatedtothestrengthoftheexpected thereionization(Santosetal. 2005;Furlanettoetal. 2004a). . signalfromreionization,Section3presentsresultsrelatedto 1 Itisalsoausefulcosmologicalprobe(Maoetal.2008;Santos 0 &Cooray2006;McQuinnetal. 2006;Bowmanetal. 2007). apotentialCObrightnesstemperaturefluctuationexperiment 1 Hereweproposespectrallineintensitymappingassociated that target 1-0 transition, and Section 4 discusses the cross- 1 with molecular gas during the era of reionization as an ad- correlationwiththe21-cmbackground. : ditionalprobeduringtheformationoffirst-lightgalaxies. In v i particular,westudytheJ=1to0transitionofthe12CO(car- 2. THECO(1-0)SIGNAL X bonmonoxide),whichhasarest-wavelengthof2.61mm.Our For a galaxy at a given redshiftthe CO(1-0) luminosityis r suggestion extendsthe initial work on this topic by Righi et takentoberelatedtotheH contentandthemetallicityofthe a al. (2008;see also Basu etal. 2004). Insteadof theangular gas (Obreschkow et al. 20209b). A key input here is the re- power spectrum, which is dominated by CMB anisotropies lation between CO(1-0)luminosity, L , and the halo mass. CO at tens of arcminute scales, we propose spectral line inten- While such a relation is expected it also has a large scatter sity mapping leading to the three-dimensional power spec- coming from differences in the gas content, at a fixed halo trum (see also Visbal & Loeb 2010). An additional probe mass, dueto variationsin thehaloagesata fixedmass; The of reionization is useful since the first-generation21-cm ex- gasinolderhalosismorelikelytobedepletedmorethanthe perimentsareexpectedtobenoise-dominatedandtheobser- youngerones with older halos containing more stars. How- vationscould,inprinciple,beaffectedbyvarioussystematics ever,forsufficientlylargevolumes,wewillbeaveragingover andresidualforegrounds. Asecondprobeofthereionization manygalaxiessothat,sothethemeanrelationanditsscatter epochprovidingthree-dimensionalinformationcanbecross- canbequantified. Thisissimilartotheluminosity-halomass correlatedwith the 21-cmspectralline measurementsto im- relationforopticallightwhichhasallowedstatistics such as provetheoverallunderstandingofreionization. the conditional luminosity functions to be constructed and improve the halo modeling beyond the simple halo occupa- 1Department ofPhysics&Astronomy, University ofCalifornia, Irvine, tionnumber(e.g.,Yangetal. 2004;Cooray&Milosavljevic CA92697 2CENTRA,InstitutoSuperiorTéecnico,Lisboa1049-001,Portugal 2005b;Cooray2006). 3Department of Physics & Astronomy, University of California, Santa Here we make use of the numerical simulations of Barbara,CA Obreschkow et al. (2009d) that are available as part of the 2 Figure1. Left: TheLCO(Mhalo)relationforCO(1-0)luminosityasafunctionofthehalomassMhaloatz=7. Thelinesshowsthemeanrelation(thickcenter line)and±1σrelation(thinlines)giventhescatter(seetextfordetails).Thedotsshowthemeanofthescatterwhenbinnedto150logarithmicintervalsinhalo mass.Right:TherelationneutralhydrogenmasscontentinindividualgalaxiesMHIvs.thehalomassMhaloatz=7. SKA SimulatedSkies website4. Thissimulationis based on the galaxy catalog from De Lucia & Blaizot (2007) which post-processed the Millennium dark matter simulation with semi-analytical models of galaxy formation. It captures the gasastrophysics,especiallyHIandH andallowforthecos- 2 mic evolution of these two phases of the cold hydrogengas (see,Obreschkowetal. 2009b;2009cfordetails). Theyalso constructedavirtualskyfieldwithHIandCOlineluminosi- ties for each of the galaxies, calculated from a combination of the neutral and molecular hydrogen gas masses and the metallicity of each galaxy. Using the online tools we made a query with a four degree observing cone containing more than5 105galaxiesateachofz=7. × TheL (M)fromeveryhaloatz 7fromthissimulation CO ∼ isshownin the leftpanelofFigure1 withthe shadeof gray darker in the regionswhere the halo density is higher. Typ- ically we find one galaxy per halo at these redshifts. The lines show the result of averaging the total L from the CO halos for each of 150 logarithmic bins of halo mass. Mo- tivated by parameterization of optical luminosity and halo mass (Cooray & Milosavljevic 2005a), we use a relation of the form L (M)=L (M/M )b(1+M/M )- d to describe the CO 0 c c meanrelationanddeterminethefourfreeparametersA, b, c andd. Atz=6,7,and8,theseparameterstakethevaluesof 3L.05=41.301×1,130.06,6.120×111,20.60,4.01×01110M6⊙L,⊙a,nbd=d2=.42,.28.,63,.24.,83,.3M,cre=- F8.igTuhree628..3T%heCb.iLa.s(a1nσd)barreigahltsnoessshotewmnpienragtruereenodfaCshOedlinlienefso.rTzh=e6b,ia7sahnads spec×tively. × × noadditionaluncertaintyastheuncertaintyinLCO(M)relationisachangein UsingtheaboverelationbetweenL andhalomassM as theoverallamplitudeatagivenmassandnotashapechange(see.eq.2). CO afunctionofredshift,wecanwritethemeanintensityofthe CO(1-0)lineas I¯CO=ZM∞mindMddMn (z,M)LC4Oπ(Dz,2LM)y(z)D2A, (1) mInoavbionvgedyis(zta)n=ced,χν/disνth=eλoCbOs(e1rv+ezd)2f/rHeq(uze),nwcyh,eλreχ=is2t.h6emcom- CO where we take Mmin =108(M⊙/h) as the minimum mass of istherestframewavelengthoftheCO(1-0)line. thedarkmatterhalosthatcanhostgalaxies(tobeconsistent Thesignalis expectedto containspatial variationsaround withmassscale ofatomicHydrogencoolingora virialtem- theaverageintensityduetopoissonfluctuationsinthenumber peratureof104K(Loeb&Barkana2001),dn/dMisthehalo ofhalos(shotnoise)andcorrelationswiththeunderlyingdark mass function(Sheth & Tormen1999),D is the luminosity matter density field which will enhance the fluctuations by L distance,andD isthecomovingangulardiameterdistance. a factor of (1+b(z,M)δ), with δ being the density contrast A of this dark matter field. The intensity of the CO(1-0) line 4http://s-cubed.physics.ox.ac.uk can be written as a function of the spatial location ICO(x)= 3 Figure3. Leftpanel: thedimensionlessautopowerspectrumandtheshotnoisepowerspectrumforCOlineatz=7. The68.3%C.L.(1σ)isshowningreen thinlines.Middlepanel:thedimensionlessautopowerspectrumandtheshotnoisepowerspectrumfor21-cmemissionatz=7.Theautoandshotnoisepower spectrumofthegalaxies∆Gand∆shotaresosmallcomparedwith∆IGM,that∆totisdominatedby∆IGM. Thebluelineswitherrorbarsmakeuseofnoise H HG H H H powerspectrum(shownbythebluedashedline)correspondingtothedesignofLOFAR.Rightpanel: thedimensionlesscrosspowerspectrumandshotnoise powerspectrumforCOlineand21-cmemissionatz=7. ThebluesolidlineistheerrorfromLOFAR.The68.3%C.L.(1σ)isshowninredthinlines. The long-dashedmagentalinesinthemiddleandrightpanelsaretheresultsfromthesimulationof21-cminSantosetal.(2010)forcomparison. I¯ [1+b δ(x)]withbiasb givenby atredshiftz(Maoetal. 2008)is CO CO CO bCO(z)= RM∞mind∞MdddMMnLdCnOLb(z,M), (2) T¯bIGM=c(z)x¯H(cid:18)T¯s- T¯TsCMB(cid:19)(mK). (5) RMmin dM CO Here x¯H is the mean neutral hydrogen fraction, that we as- whereb(z,M)isthehalobias(Sheth&Tormen1999). sume x¯ 1- x¯ where x¯ is the mean ionized fraction, and H i i In Figure 2, we show both the mean signal and the halo wesetx¯ ≡=0.3and0.7atz=7and8respectively(Maoetal. biasasafunctionoftheredshiftduringreionization.Forsim- H ¯ 2008). The T is the averagedspin temperature of the IGM, plicity,wehaveconvertedthemeanintensityofthesignalto s ¯ andweassumeT T here. Theparameterc(z)(defined s CMB Rayleigh-Jeansbrightnesstemperature.Atz 6,thesignalis ≫ inSantosetal. 2008)is ∼ atthelevelof0.2to1.5µK,withthelargerangecomingfrom theSisnccaettethreinmtheaenLiCnOte(Mns)itryeliastciohna.llengingtomeasureasitre- c(z)=23(cid:18)0h.7(cid:19)(cid:18)Ω0.b0h22(cid:19)(cid:18)Ω0.1h5211+0z(cid:19)1/2(mK), (6) quires absolute measurements we discuss the feasibility of m measuring anisotropies of the CO line intensity. The total whereΩ isthebaryondensityparameter. b power spectrum of the CO(1-0) line involves two contribu- Weobtainthepowerspectrumofthe21-cmfluctuationsin tions, the clustering term and the shot noise. Following the the IGM using the fitting formula of Mao et al. (2008) at mean intensity and bias given above, the clustering power severalredshiftsduringreionization.Forcomparisonwealso spectrumis considerthereionizationsimulationsofSantosetal. (2010). PCclOus(z,k)=T¯C2Ob2COPδδ(z,k). (3) Thesesimulationshaveasmallerbubblesizeonaveragethan the models of Mao et al. (2008). As we will discuss later, ¯ HereTCO isthemeantemperatureofCO line, Pδδ =Plin(z,k) while two models we consider give rise to the same 21-cm where Plin is the linear power spectrum of the dark matter. power spectrum, they different significantly in terms of the The shot niose power spectrum, due to discretization of the cross-correlation of CO and 21-cm brightness temperature galaxies,is fluctuations. SimilartotheIGMcalculationthemeanbrightnesstemper- ∞ dn L 2 Pshot(z)= dM CO yD2 . (4) atureof 21-cmemission fromthe galaxiescanbe calculated CO Z dM(cid:18)4πD2 A(cid:19) through Mmin L T¯G=c(z) ρH(z) (mK), (7) 3. CROSSPOWERSPECTRUMOFCOLINEAND21-CMEMISSION b Xρ (z) b In order to calculate the expected strength of the correla- whereX =0.76isthehydrogenmassfraction,ρ (z)=Ω (1+ tionbetween21-cmandCOlineintensities,webrieflydiscuss b b tchoenbsirdigerhttnweosssitgenmaplse,rtahteuruesvuaarlisaitgionnaslcinomthieng21fr-ocmmnsieguntaral.lgWaes z(M)3ρpcc/ish)th- 3e.baryondensityatzandρc=2.7752×1011M⊙/h Weassumethatthetotalhydrogenmassinagivenpixelof intheintergalacticmediumthatisnotdirectlycorrelatedwith theexperimentonlydependsonthehalomasssothatthehy- molecular gas in galaxies, and the remaining neutral gas in individualgalaxies. Duringtheeraofreionizationthe21-cm drogenmassdensityρH isgivenbyρH= M∞mindMddMnMHI(M). brightnesstemperaturefluctuationsareexpectedtobe domi- To obtain MHI(M) we used the same pRrocedure as before, natedbythe IGM.Atlowerredshifts, Whilethe IGMsignal queryingthesimulationfromObreschkowetal. (2009d)and is zero, a small 21-cm contribution still remains due to the adding the M from the galaxies in each halo. The result- HI neutralgasinindividualgalaxies. ing scatter plot is shown in the right panel of Figure 1 to- Thedifferenceofthespatiallyaveragedbrightnesstemper- gether with the average in each mass bin (blue dots). The atureof21-cmemissionintheIGMandtheCMBtemperature red line shows a fitting function to the average values using 4 MHI=10A×log10(M)+B,whereMisthehalomass,A=0.75,0.74 wave mode k and θ is the angle between k and the line of and 0.75, and B=0.17, 0.23 and 0.07 for z=6, 7 and 8 re- sight). Typicallythis baselinedistributionwill bemorecon- spectively. centrated around the core but for interferometers with high Following the description related to the CO line intensity, filling factorswe can make the simplification that the distri- themean21-cmbrightnesstemperatureistakentohavespa- bution is constant so that the required function for above is tialvariationsTG(x)=T¯G(1+b δ(x)),whereb isthebiasof n()=λ2N2/πD2 with N as thenumberofelementsofthe b b H H a max a galaxiescontainingneutralhydrogen interferometerandD themaximumbaseline ofthe distri- max b (z)= M∞mindMddMnMHb(z,M). (8) batutaiogni.veNnokteisthjautstth(ePSer+roPrNi)n/√th(eNmm)e,awsuhreerdepPoSwiesrthspeescitgrunmal H R ρH powerspectrumandNm isthenumberofmodescontributing toagivenbinnedmeasurement. Inordertocountthesenum- The clustering power spectrum of the 21-cm emission from ¯ berofmodes,weconsideragridinkspacewitharesolution galaxies is then PHG(z,k)=(TbG)2b2HPδδ(z,k). Again, the shot givenby(2π)3/(yr2 FoV B), whichisset bythevolumeof noisepowerspectrumfor21-cmemissionis · · the experiment(B is the bandwidth used in the analysis and ∞ dn M 2 FoVisthefieldofview). Pshot(z)= dM c(z) H . (9) Typically we will be interested on linear scales (k < 1.0 H ZMmin dM(cid:18) Xρb(z)(cid:19) h/Mpc) corresponding to a few arcminutes. Given the fre- Thetotalpowerspectrumof21-cmemissionfollowsfroma quenciesinvolved,theneedforlargeFoV,andhighsensitivity sum of shot-noise and clustering terms (see middle panel in to µK brightnesstemperaturefluctuationsleads to an exper- figure3). imental setup that involves a total collecting area Atot =385 Thecrosspowerspectrumbetween21-cmandCOlinein- m2, bandwidth B=1 GHz with spectral resolution δν =30 tensitiesisPtot = PIGM +PG +Pshot ,whereweagainsep- MHzandinterferometerspacingsbetween0.7and25m. The CO,H CO,H CO,H CO,H aratethecontributionfromneutralhydrogenintheIGMand numberofelementsis1000witheachhavingareceiverwith neutralhydrogenremaininginindividualgalaxies. Basedon systemtemperatureof20K.IntheleftpanelofFigure3, we thediscussionrelatedto21-cmfluctuations,thecrosspower assumeatotalintegrationtimeof3000hourswhencalculat- spectrumoftheCOlineand21-cmemissionintheIGMis ing the noise powerspectrum. For 21-cmnoise calculations wemakeuseofasetupsimilartoLOFAR,thoughwenotethat PCIGOM,H(z,k)=T¯CObCOc(z)[(1- ¯xi)Pδδ- x¯iPδxδ], (10) our calculations are not too different for an experiment like MWA.ForexperimentalparametersrelatedtoLOFAR,were- where Pδxδ(z,k) is the cross power spectrum for the ionized ferthereadertoHarkeretal.(2010).Thevalues(at150MHz) fractionandthedarkmatter. TheIGMgasiscorrelatedwith areA =5 104m2,T =490K(instrumentnoisetempera- CO lines astheybothtracethe same underlyingdarkmatter tot × sys ture),FOV=25deg2,bandwidthof8MHzwithδν=0.5MHz densityfield. andD =2000m. WetakeT =1000hours. ThecrosspowerspectrumoftheCOlineand21-cmemis- max int Fortheproposedexperimentalsetupthebrightnesstemper- sioninindividualgalaxiesis ature fluctuations can be detected with a cumulative signal- PCGO,H(z,k)=T¯COT¯bGbCObHPδδ(z,k), (11) to-noiseratio thatleadsto morethan40σ confidence. How- ever, CO(1-0) mapping could be impacted by foregrounds, whiletheshotnoisepowerspectrumoftheCOlineand21-cm including spectral lines associated with other molecules; In emissioninthegalaxiesis the case of other transitions of the CO lines, the contamina- ∞ dn L M tion for CO(1-0) measurements at z 6 to 8 is likely to be PCshOo,tH(z)=ZMmindMdM4πCDO2LyD2Ac(z)XρbH(z). (12) mz ini1m3atlo; 1th7e. CThOe(2m-1o)stlisnigenfiofircaenxtamcop∼nlteammiunsattioornigsiwnailtlelifkroelmy ∼ 4. DISCUSSION come from molecular transitions that have rest wavelengths longward of the CO(1-0) line and thus coming from lower In Figure 3, left panel, we show the brightness tempera- redshifts. To avoid such contaminations and to improve the ture power spectrum for the CO line at z= 7, while in the overall study of reionization we suggest a cross-correlation middlepanelweshowthe21-cmbrightnesstemperaturefluc- between 21-cm brightness temperature fluctuations and the tuationsatthe sameredshiftandin therightpanel,we show COintensities. the cross-correlationbetween the two. In the case of 21-cm Forthecross-correlation,weassumethatobservationswill fluctuations,thesolidlinesshowthepredictionbasedonthe beconductedinoverlappingareasontheskybyboththeCO modelsofMaoetal. (2008),whilein dashedlineswe show and 21-cmexperiment. Thisis a necessary featureof cross- the predictionfromthe semi-numericalsimulationof Santos correlation study leading to some coordinationbetween two etal. (2010). experiments. We reduce both datasets to a common, and a To discuss the possibility of measuring the CO signal and lower resolutioncube in frequencyand countthe total num- the CO-21 cm cross-correlation we make use of a calcula- berofcommonmodescontributingtoa givenbinink space tion similar to the one used in 21-cm interferometers. Fol- usingthesamemethodfornoisecalculationasbeforeforeach lowing Santos et al. (2010), the noise power spectrum, P N of the experiments. Note that the error in a given pixel in k for a given experimental “pixel” in Fourier space is given by P (k,θ)= D2y(λ4T2 )/[A2t n D ksin(θ)/2π ] where A space can be written as (P2 +P P )/N , where N is N A sys e 0 A e CO,H CO H m m is the collecting area of one ele(cid:0)ment of the in(cid:1)terferometer the number of modes. Iqn Figure 3 right label we show the (which could be a station), t0 is the total observation time cross-correlation power spectrum at z=7 and the expected and the function n() captures the baseline density distribu- binnederrorsbyusing LOFAR andthe CO experimentwith tion on the plane perpendicular to the line of sight, assum- parameters outlined in above. The overall uncertainties are ing alreadyit is rotationallyinvariant(k is the moduliof the 5 dominatedbythe21-cmobservations. Forreference,wealso L /L 4100. With a rest wavelengthat158µm, obser- CII CO ∼ show the prediction of the model by Mao et al. (2008) and vations are required over the frequencyrange of 210 to 270 fromthenumericalsimulationofSantosetal. (2010). While GHz (1.1 to 1.4mm). The rms fluctuations are expected to thetwogiveasimilar21-cmfluctuationpowerspectrum,they be at the level of 102 to 103 Jy/sr at z 7 to 8 at tens of differ significantly in terms of the cross-correlationwith the arcminuteangular scales. To probe reion∼izationfluctuations CO emission. The difference is primarily related to the av- associatedwiththeCIIline,observationsmustbecarriedout eragescaleofthereionizedbubblesizesandwefindthatthe insmallfrequencyintervalsof50MHzwithinstrumentspro- cross-correlationsuchastheoneweproposehereismoresen- vidingangularresolutionofordertenarcminuteswithsurvey sitivetoastrophysicsduringreionizationthanwith21-cmdata areasoforderafewtenssquaredegrees.Inafuturepaperwe alone. hopetoreturntothescientificcaseofapotentialCIIexperi- While our calculation and results are related to the CO(1- ment,sincesuchanobservationcanprobemultipleredshifts 0)transition,ourmethodcanbeextendedtoothertransitions withbothCIIandhigh-JCOlines. and other molecules as well as long as a correction is made for the ratio of line intensity between higher J transitions of COandthe1-0line.Existingobservations,atlowtomoderate redshifts,suggestavalueofabout0.6forJ=2to1luminosity WethankparticipantsoftheKavliInstituteforSpaceStud- whencomparedto1-0luminosity. The2-1observationswill ies’ (KISS) Billion Years workshop for helpful discussions. beoverthefrequencyrangeof25.5to32GHzforz 6to8. This work was supported by NSF CAREER AST-0645427 ∼ The fine structure line CII has been detected in several at UCI. MGS and MBS acknowledges support from FCT- of the high-z galaxies and existing studies indicate that PortugalundergrantPTDC/FIS/100170/2008. REFERENCES Basu,K.etal.2004,A&A,416,447 Mao,Y.,etal.2008,PRD,78,023529 Chang,T-C.,etal.2010,arXiv:1007.3709 McQuinn,M.,etal.2006,ApJ,74,083517 Cooray,A.,&Milosavljevic,M.2005a,ApJ,627,85 ObreschkowD.,etal.2009b,ApJ,698,1467 Cooray,A.,&Milosavljevic,M.2005b,ApJ,627,89 ObreschkowD.,etal.2009c,ApJ,702,1321 Cooray,A.2006,MNRAS,365,842 ObreschkowD.,etal.2009d,ApJ,703,1890 Bowman,J.,etal.2007,ApJ,661,1 Riechers,D.A.,etal.2010,arXiv:1008.0389 DeLuciaG.,etal.2007,MNRAS,375,2 Righi,M.etal.2008,A&A,2,489 Downes,D.,&Solomon,P.M.1998,ApJ,507,615 Santos,M.G.,etal.2005,ApJ,625,575 Furlanetto,S.R.,etal.2004a,613,16 Santos,M.G.,&Cooray.A.2006,PRD,74,083517 Gnedin,N.Y.,&Shaver,P.A.2004,608,611 Santos,M.G.,etal.2008,ApJ,689,1 Greve,T.R.,etal.2005,MNRAS,359,1165 Harker,etal.2010,MNRAS,405,2492 Santos,M.G.,etal.2010,arXiv:1009.0950 Lah,P.etal.2007,MNRAS,376,1357 Sheth,R.K.,&Tormen,G.1999,MNRAS,308,119 Loeb,A.,&Barkana,R.2001,ARA&A,39,19 SpringelV.,etal.2005,Nature,435,629 Loeb,A.,&Zaldarriaga,M.2004,PRL,92,211301 Visbal,E.,&Loeb,A.2010,arXiv:1008.3178 Madau,P.,etal.1997,ApJ,475,429 Yang,X.,etal.2004,MNRAS,350,1153