ebook img

Probability: Theory and Examples PDF

433 Pages·2019·3.456 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability: Theory and Examples

Probability Thislivelyintroductiontomeasure-theoreticprobabilitytheorycoverslawsoflarge numbers,centrallimittheorems,randomwalks,martingales,Markovchains,ergodic theorems,andBrownianmotion.Concentratingontheresultsthatarethemostuseful for applications, this comprehensive treatment is a rigorous, measure theory–based graduatetextandreference.Operatingunderthephilosophythatthebestwaytolearn probabilityistoseeitinaction,thebookcontainsmanyextendedexamplesthatapply thetheorytoconcreteapplications.Readerslearntorecognizewhenamethodworks and,moreimportant,whenitdoesnot. This fifth edition contains a new chapter on multidimensional Brownian motion and its relationship to PDEs, an advanced topic that is finding new applications. Setting the foundation for this expansion, Chapter 7 now features a proof of Itoˆs formula. Key exercises that previously were simply proofs left to the reader have beendirectlyinsertedintothetextaslemmas.Theneweditionalsoreinstatesdiscus- sionaboutthecentrallimittheoremformartingalesandstationarysequences. RICK DURRETT is a James B. Duke professor in the mathematics department of Duke University. He received his Ph.D. in Operations Research from Stanford Universityin1976.AfternineyearsatUCLAandtwenty-fiveatCornellUniversity, he moved to Duke in 2010. He is the author of 8 books and more than 220 journal articlesonawidevarietyoftopics,andhassupervisedmorethan45Ph.D.students. He is a member of National Academy of Science, American Academy of Arts and Sciences,andafellowoftheInstituteofMathematicalStatisticsandoftheAmerican MathematicalSociety. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard Z.Ghahramani(DepartmentofEngineering,UniversityofCambridge) R.Gill(MathematicalInstitute,LeidenUniversity) F.P.Kelly(DepartmentofPureMathematicsandMathematicalStatistics,UniversityofCambridge) B.D.Ripley(DepartmentofStatistics,UniversityofOxford) S.Ross(DepartmentofIndustrialandSystemsEngineering, UniversityofSouthernCalifornia) M.Stein(DepartmentofStatistics,UniversityofChicago) This series of high-quality upper-division textbooks and expository monographs covers all aspectsofstochasticapplicablemathematics.Thetopicsrangefrompureandappliedstatistics toprobabilitytheory,operationsresearch,optimization,andmathematicalprogramming.The books contain clear presentations of new developments in the field and also of the state of theartinclassicalmethods.Whileemphasizingrigoroustreatmentoftheoreticalmethods,the booksalsocontainapplicationsanddiscussionsofnewtechniquesmadepossiblebyadvances incomputationalpractice. Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/statistics. Recenttitlesincludethefollowing: 22. SaddlepointApproximationswithApplications,byRonaldW.Butler 23. AppliedAsymptotics,byA.R.Brazzale,A.C.DavisonandN.Reid 24. RandomNetworksforCommunication,byMassimoFranceschettiandRonaldMeester 25. DesignofComparativeExperiments,byR.A.Bailey 26. SymmetryStudies,byMarlosA.G.Viana 27. ModelSelectionandModelAveraging,byGerdaClaeskensandNilsLidHjort 28. BayesianNonparametrics,editedbyNilsLidHjortetal. 29. FromFiniteSampletoAsymptoticMethodsinStatistics,byPranabK.Sen, JulioM.SingerandAntonioC.PedrosadeLima 30. BrownianMotion,byPeterMo¨rtersandYuvalPeres 31. Probability(FourthEdition),byRickDurrett 33. StochasticProcesses,byRichardF.Bass 34. RegressionforCategoricalData,byGerhardTutz 35. ExercisesinProbability(SecondEdition),byLo¨ıcChaumontandMarcYor 36. StatisticalPrinciplesfortheDesignofExperiments,byR.Mead,S.G.Gilmourand A.Mead 37. QuantumStochastics,byMou-HsiungChang 38. NonparametricEstimationunderShapeConstraints,byPietGroeneboomand GeurtJongbloed 39. LargeSampleCovarianceMatricesandHigh-DimensionalDataAnalysis,by JianfengYao,ShurongZhengandZhidongBai 40. MathematicalFoundationsofInfinite-DimensionalStatisticalModels,byEvaristGine´ andRichardNickl 41. Confidence,Likelihood,Probability,byToreSchwederandNilsLidHjort 42. ProbabilityonTreesandNetworks,byRussellLyonsandYuvalPeres 43. RandomGraphsandComplexNetworks(Volume1),byRemcovanderHofstad 44. FundamentalsofNonparametricBayesianInference,bySubhashisGhosalandAadvan derVaart 45. Long-RangeDependenceandSelf-Similarity,byVladasPipirasandMuradS.Taqqu 46. PredictiveStatistics,byBertrandS.ClarkeandJenniferL.Clarke 47. High-DimensionalProbability,byRomanVershynin 48. High-DimensionalStatistics,byMartinJ.Wainwright 49. Probability:TheoryandExamples(FifthEdition),byRickDurrett Probability Theory and Examples FIFTH EDITION Rick Durrett DukeUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108473682 DOI:10.1017/9781108591034 ©RickDurrett2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd.,Padstow,Cornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Durrett,Richard,1951–author. Title:Probability:theoryandexamples/RickDurrett(DukeUniversity, Durham,NorthCarolina). Description:Fifthedition.|Cambridge;NewYork,NY:CambridgeUniversity Press,2019.|Series:Cambridgeseriesinstatisticalandprobabilistic mathematics;49|Includesbibliographicalreferencesandindex. Identifiers:LCCN2018047195|ISBN9781108473682(hardback:alk.paper) Subjects:LCSH:Probabilities.|Probabilities–Textbooks. Classification:LCCQA273.D8652019|DDC519.2–dc23 LCrecordavailableathttps://lccn.loc.gov/2018047195 ISBN978-1-108-47368-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pagexi 1 MeasureTheory 1 1.1 ProbabilitySpaces 1 1.2 Distributions 8 1.3 RandomVariables 13 1.4 Integration 15 1.5 PropertiesoftheIntegral 21 1.6 ExpectedValue 25 1.6.1 Inequalities 25 1.6.2 IntegrationtotheLimit 26 1.6.3 ComputingExpectedValues 28 1.7 ProductMeasures,Fubini’sTheorem 33 2 LawsofLargeNumbers 37 2.1 Independence 37 2.1.1 SufficientConditionsforIndependence 39 2.1.2 Independence,Distribution,andExpectation 41 2.1.3 SumsofIndependentRandomVariables 43 2.1.4 ConstructingIndependentRandomVariables 45 2.2 WeakLawsofLargeNumbers 48 2.2.1 L2WeakLaws 48 2.2.2 TriangularArrays 51 2.2.3 Truncation 53 2.3 Borel-CantelliLemmas 58 2.4 StrongLawofLargeNumbers 65 2.5 ConvergenceofRandomSeries* 69 2.5.1 RatesofConvergence 75 2.5.2 InfiniteMean 76 2.6 RenewalTheory* 78 2.7 LargeDeviations* 90 3 CentralLimitTheorems 98 3.1 TheDeMoivre-LaplaceTheorem 98 3.2 WeakConvergence 100 vii viii Contents 3.2.1 Examples 100 3.2.2 Theory 102 3.3 CharacteristicFunctions 108 3.3.1 Definition,InversionFormula 108 3.3.2 WeakConvergence 114 3.3.3 MomentsandDerivatives 116 3.3.4 Polya’sCriterion* 119 3.3.5 TheMomentProblem* 121 3.4 CentralLimitTheorems 125 3.4.1 i.i.d.Sequences 125 3.4.2 TriangularArrays 128 3.4.3 PrimeDivisors(Erdo¨s-Kac)* 132 3.4.4 RatesofConvergence(Berry-Esseen)* 136 3.5 LocalLimitTheorems* 140 3.6 PoissonConvergence 145 3.6.1 TheBasicLimitTheorem 145 3.6.2 TwoExampleswithDependence 149 3.7 PoissonProcesses 151 3.7.1 CompoundPoissonProcesses 154 3.7.2 Thinning 155 3.7.3 Conditioning 157 3.8 StableLaws* 159 3.9 InfinitelyDivisibleDistributions* 168 3.10 LimitTheoremsinRd 171 4 Martingales 178 4.1 ConditionalExpectation 178 4.1.1 Examples 180 4.1.2 Properties 182 4.1.3 RegularConditionalProbabilities* 185 4.2 Martingales,AlmostSureConvergence 188 4.3 Examples 194 4.3.1 BoundedIncrements 194 4.3.2 Polya’sUrnScheme 196 4.3.3 Radon-NikodymDerivatives 197 4.3.4 BranchingProcesses 200 4.4 Doob’sInequality,ConvergenceinLp,p >1 203 4.5 SquareIntegrableMartingales* 208 4.6 UniformIntegrability,ConvergenceinL1 211 4.7 BackwardsMartingales 216 4.8 OptionalStoppingTheorems 221 4.8.1 ApplicationstoRandomWalks 223 4.9 CombinatoricsofSimpleRandomWalk* 227 5 MarkovChains 232 5.1 Examples 232 5.2 Construction,MarkovProperties 235 Contents ix 5.3 RecurrenceandTransience 243 5.4 RecurrenceofRandomWalksStararredSection 248 5.5 StationaryMeasures 259 5.6 AsymptoticBehavior 268 5.7 Periodicity,Tailσ-Field* 274 5.8 GeneralStateSpace* 278 5.8.1 RecurrenceandTransience 281 5.8.2 StationaryMeasures 281 5.8.3 ConvergenceTheorem 282 5.8.4 GI/G/1Queue 283 6 ErgodicTheorems 286 6.1 DefinitionsandExamples 286 6.2 Birkhoff’sErgodicTheorem 289 6.3 Recurrence 293 6.4 ASubadditiveErgodicTheorem 296 6.5 Applications 300 7 BrownianMotion 305 7.1 DefinitionandConstruction 305 7.2 MarkovProperty,Blumenthal’s0-1Law 311 7.3 StoppingTimes,StrongMarkovProperty 316 7.4 PathProperties 320 7.4.1 ZerosofBrownianMotion 320 7.4.2 HittingTimes 321 7.5 Martingales 325 7.6 Itoˆ’sFormula* 328 8 ApplicationstoRandomWalk 336 8.1 Donsker’sTheorem 336 8.2 CLTsforMartingales 342 8.3 CLTsforStationarySequences 347 8.3.1 MixingProperties 351 8.4 EmpiricalDistributions,BrownianBridge 354 8.5 LawsoftheIteratedLogarithm 360 9 MultidimensionalBrownianMotion 364 9.1 Martingales 364 9.2 HeatEquation 366 9.3 InhomogeneousHeatEquation 368 9.4 Feynman-KacFormula 370 9.5 DirichletProblem 373 9.5.1 ExitDistributions 377 9.6 Green’sFunctionsandPotentialKernels 379 9.7 Poisson’sEquation 382 9.7.1 OccupationTimes 385 9.8 Schro¨dingerEquation 387

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.