Probability, Statistics, and Stochastic Processes Probability, Statistics, and Stochastic Processes Peter Olofsson Mikael Andersson AWiley-IntersciencePublication JOHN WILEY & SONS, INC. NewYork / Chichester / Weinheim / Brisbane / Singapore / Toronto Preface TheBook InNovember2003,Iwascompletingareviewofanundergraduatetextbookinprob- ability and statistics. In the enclosedevaluationsheet was the question “Have you ever considered writing a textbook?” and I suddenly realized that the answer was “Yes,” and had been for quite some time. For several years I had been teaching a courseoncalculus-basedprobabilityandstatisticsmainlyformathematics,science, andengineeringstudents. Otherthanthebasicprobabilitytheory,mygoalwastoin- cludetopicsfromtwoareas: statisticalinferenceandstochasticprocesses. Formany students this was the only probability/statistics course they would ever take, and I founditdesirablethattheywerefamiliarwithconfidenceintervalsandthemaximum likelihoodmethod,aswellasMarkovchainsandqueueingtheory. Whiletherewere plentyofbookscoveringoneareaortheother,itwassurprisinglydifficulttofindone thatcoveredbothinasatisfyingwayandontheappropriatelevelofdifficulty. My solutionwastochooseonetextbookandsupplementitwithlecturenotesinthearea thatwasmissing. AsIchangedtextsoften,plentyoflecturenotesaccumulatedand itseemedlikea goodideatoorganizethemintoatextbook. Iwaspleasedtolearn thatthegoodpeopleatWileyagreed. It is now more than a year later, and the bookhas been written. The first three chaptersdevelopprobabilitytheoryandintroducetheaxiomsofprobability,random variables,andjointdistributions. Thefollowingtwo chaptersareshorterandofan “introductionto”nature: Chapter4onlimittheoremsandChapter5onsimulation. Statistical inference is treated in Chapter 6, which includes a section on Bayesian v vi PREFACE statistics, too oftena neglectedtopicin undergraduatetexts. Finally, in Chapter7, Markov chains in discrete and continuous time are introduced. The reference list atthe end of thebookis byno meansintendedto be comprehensive;rather, it is a subjectiveselectionoftheusefulandtheentertaining. ThroughoutthetextIhavetriedtoconveyanintuitiveunderstandingofconcepts andresults, whichis whya definitionora propositionisoftenprecededbya short discussion or a motivating example. I have also attempted to make the exposition entertainingbychoosingexamplesfromtherichsourceoffunandthought-provoking probabilityproblems. Thedatasetsusedinthestatisticschapterareofthreedifferent kinds: real,fakebutrealistic,andunrealisticbutillustrative. Thepeople Most textbookauthors start by thankingtheir spouses. I know now that this is far more than a formality, and I would like to thank Aλκµη´νη not only for patiently puttingupwithirregularworkhoursandanabsentmindednessgreaterthanusualbut alsoforvaluablecommentsontheaestheticsofthemanuscript. A numberof people have commentedon variousparts and aspects of the book. First, Iwouldlike tothankOlle Ha¨ggstro¨matChalmersUniversityofTechnology, Go¨teborg,Swedenforvaluablecommentsonall chapters. His remarksare always accurate and insightful, and never obscured by unnecessary politeness. Second, I wouldliketothankKjellDoksumattheUniversityofWisconsinforaveryhelpful reviewofthestatisticschapter. IhavealsoenjoyedtheBayesianenthusiasmofPeter Mu¨llerattheUniversityofTexasMDAndersonCancerCenter. Otherpeoplewhohavecommentedonpartsofthebookorbeenotherwisehelpful are my colleagues Dennis Cox, Kathy Ensor, Rudy Guerra, Marek Kimmel, Rolf Riedi,JavierRojo,DavidW.Scott,andJimThompsonatRiceUniversity;Prof. Dr. R.W.J.MeesteratVrijeUniversiteit,Amsterdam,TheNetherlands;TimoSeppa¨la¨inen at the University of Wisconsin; Tom English at Behrend College; Robert Lund at ClemsonUniversity;andJaredMartinatShellExplorationandProduction. Forhelp with solutions to problems, I am grateful to several bright Rice graduate students: Blair Christian, Julie Cong, Talithia Daniel, GingerDavis, Li Deng, GretchenFix, HectorFlores, GarrettFox,DarrinGershman,JasonGershman,ShuHan,Shannon Neeley,RickOtt,GalenPapkov,BoPeng,ZhaoxiaYu,andJennyZhang. Thanksto MikaelAnderssonatStockholmUniversity,Swedenforcontributionstotheproblem sections,andtoPatrickKingatODS–Petrodata,Inc. forprovidingdatawithadis- tinctTexasflavor: oilrigcharterrates. AtWiley,IwouldliketothankSteveQuigley, SusanneSteitz, andKellsee Chuforalwayspromptlyansweringmyquestions. Fi- nally,thankstoJohnHaigh,JohnAllenPaulos,JeffreyE.Steif,andananonymous Dutchmanforagreeingtoappearandbemildlymockedinfootnotes. PETEROLOFSSON Houston,Texas,2005 PREFACE vii PrefacetotheSecondEdition Thesecondeditionwasmotivatedbycommentsfromseveralusersandreadersthat thechaptersonstatisticalinferenceandstochasticprocesseswouldbenefitfromsub- stantial extensions. To accomplish such extensions, I decided to bring in Mikael Andersson,anoldfriendandcolleaguefromgraduateschool. Beingfivedaysmyju- nior,hebroughtavigorousandyouthfulperspectivetothetaskandIamverypleased withtheoutcome. Below,Mikaelwilloutlinethemajorchangesandadditionsintro- ducedinthesecondedition. PeterOlofsson SanAntonio,Texas,2011 The chapter on statistical inference has been extended, reorganized and split into twonewchapters. Chapter6introducestheprinciplesandconceptsbehindstandard methodsofstatisticalinferenceingeneralwhiletheimportantspecialcaseofnormally distributedsamplesistreatedseparatelyinChapter7. Thisisasomewhatdifferent structurecomparedtomostothertextbooksinstatisticssincecommonmethodsliket testsandlinearregressioncomeratherlateinthetext. Accordingtomyexperience, ifmethodsbasedonnormalsamplesarepresentedtooearlyinacourse,theytendto overshadowotherapproacheslikenonparametricandbayesianmethodsandstudents becomelessawarethatthesealternativesexist. New additions in Chapter 6 include consistency of point estimators, large sam- ple theory, bootstrap simulation, multiple hypothesis testing, Fisher’s exact test, Kolmogorov-Smirnov’stestandnonparametricconfidenceintervalsaswellasadis- cussionofinformativeversusnon-informativepriorsandcredibilityintervalsinSec- tion6.8. Chapter 7 opens with a detailed treatment of sampling distributions, like the t, chi-squareandF distributions,derivedfromthenormaldistribution. Therearealso newsectionsintroducingone-wayanalysisofvarianceandthegenerallinearmodel. Chapter8havebeenexpandedtoincludethreenewsectionson martingales,re- newalprocessesandBrownianmotion,respectively. Theseareasareofgreatimpor- tanceinprobabilitytheoryandstatistics,butsincetheyarebasedonquiteextensive andadvancedmathematicaltheory,weonlyofferabriefintroductionhere. Ithasbeenagreatprivilege,responsibilityandpleasuretohavehadtheopportunity toworkwithsuchanesteemedcolleagueandgoodfriend. Finally,thejointproject thatwedreamedaboutduringgraduateschoolhascometofruition! I also have a victim of preoccupation and absentmindedness; my beloved Eva whomIwanttothankforhersupportandalltheloveandfriendshipwehaveshared andwillcontinuetoshareformanydaystocome. MikaelAndersson Stockholm,Sweden,2011 Contents Preface v 1 BasicProbabilityTheory 1 1.1 Introduction 1 1.2 SampleSpacesand Events 3 1.3 TheAxiomsofProbability 7 1.4 FiniteSampleSpaces andCombinatorics 16 1.4.1 Combinatorics 18 1.5 ConditionalProbabilityandIndependence 29 1.5.1 IndependentEvents 35 1.6 TheLawof TotalProbabilityand Bayes’Formula 43 1.6.1 Bayes’Formula 49 1.6.2 Geneticsand Probability 56 1.6.3 RecursiveMethods 58 2 RandomVariables 79 2.1 Introduction 79 2.2 DiscreteRandomVariables 81 2.3 ContinuousRandomVariables 86 2.3.1 TheUniformDistribution 94 ix x CONTENTS 2.3.2 Functionsof RandomVariables 96 2.4 Expected ValueandVariance 99 2.4.1 The Expected Value of a Function of a Random Variable 104 2.4.2 Varianceofa RandomVariable 108 2.5 SpecialDiscreteDistributions 115 2.5.1 Indicators 116 2.5.2 TheBinomialDistribution 116 2.5.3 TheGeometricDistribution 120 2.5.4 ThePoissonDistribution 122 2.5.5 TheHypergeometricDistribution 125 2.5.6 DescribingData Sets 127 2.6 TheExponentialDistribution 128 2.7 TheNormalDistribution 132 2.8 OtherDistributions 137 2.8.1 TheLognormalDistribution 137 2.8.2 TheGamma Distribution 139 2.8.3 TheCauchyDistribution 140 2.8.4 Mixed Distributions 141 2.9 LocationParameters 142 2.10 TheFailureRateFunction 145 2.10.1UniquenessoftheFailureRateFunction 147 3 JointDistributions 161 3.1 Introduction 161 3.2 TheJointDistributionFunction 161 3.3 DiscreteRandomVectors 163 3.4 JointlyContinuousRandomVectors 166 3.5 ConditionalDistributionsand Independence 169 3.5.1 IndependentRandomVariables 174 3.6 FunctionsofRandomVectors 178 3.6.1 Real-ValuedFunctionsof RandomVectors 178 3.6.2 TheExpected ValueandVarianceofa Sum 182 3.6.3 Vector-ValuedFunctionsofRandomVectors 188 3.7 ConditionalExpectation 191 3.7.1 ConditionalExpectationasa RandomVariable 195 3.7.2 ConditionalExpectationandPrediction 197 3.7.3 ConditionalVariance 198 3.7.4 RecursiveMethods 199
Description: