ebook img

Probability, statistics, and random signals PDF

433 Pages·2016·9.812 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability, statistics, and random signals

PROBABILITY, STATISTICS, AND RANDOM SIGNALS PROBABILITY, STATISTICS, AND RANDOM SIGNALS CHARLES G. BONCELET JR. UniversityofDelaware NewYork•Oxford OXFORDUNIVERSITYPRESS OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch, scholarship,andeducationbypublishingworldwide. Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile CzechRepublic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam Copyright©2016byOxfordUniversityPress FortitlescoveredbySection112oftheU.S.HigherEducationOpportunity Act,pleasevisitwww.oup.com/us/heforthelatestinformationabout pricingandalternateformats. PublishedbyOxfordUniversityPress. 198MadisonAvenue,NewYork,NY10016 http://www.oup.com OxfordisaregisteredtrademarkofOxfordUniversityPress. Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise, withoutthepriorpermissionofOxfordUniversityPress. LibraryofCongressCataloginginPublicationData Names:Boncelet,CharlesG. Title:Probability,statistics,andrandomsignals/CharlesG.BonceletJr. Description:NewYork:OxfordUniversityPress,[2017]|Series:TheOxfordseriesinelectricalandcomputer engineering|Includesindex. Identifiers:LCCN2015034908|ISBN9780190200510 Subjects:LCSH:Mathematicalstatistics–Textbooks.|Probabilities–Textbooks.|Electrical engineering–Mathematics–Textbooks. Classification:LCCQA276.18.B662017|DDC519.5–dc23LCrecordavailableat http://lccn.loc.gov/2015034908 Printingnumber:9 8 7 6 5 4 3 2 1 PrintedintheUnitedStatesofAmerica onacid-freepaper CONTENTS PREFACE xi 1 PROBABILITYBASICS 1 1.1 WhatIsProbability? 1 1.2 Experiments,Outcomes,andEvents 3 1.3 VennDiagrams 4 1.4 RandomVariables 5 1.5 BasicProbabilityRules 6 1.6 ProbabilityFormalized 9 1.7 SimpleTheorems 11 1.8 CompoundExperiments 15 1.9 Independence 16 1.10 Example:CanSCommunicateWithD? 17 1.10.1 ListAllOutcomes 18 1.10.2 ProbabilityofaUnion 19 1.10.3 ProbabilityoftheComplement 20 1.11 Example:NowCanSCommunicateWithD? 21 1.11.1 ABigTable 21 1.11.2 BreakIntoPieces 22 1.11.3 ProbabilityoftheComplement 23 1.12 ComputationalProcedures 23 Summary 24 Problems 25 2 CONDITIONALPROBABILITY 29 2.1 DefinitionsofConditionalProbability 29 2.2 LawofTotalProbabilityandBayesTheorem 32 2.3 Example:UrnModels 34 2.4 Example:ABinaryChannel 36 2.5 Example:DrugTesting 38 2.6 Example:ADiamondNetwork 40 Summary 41 Problems 42 3 ALITTLECOMBINATORICS 47 3.1 BasicsofCounting 47 3.2 NotesonComputation 52 v vi CONTENTS 3.3 CombinationsandtheBinomialCoefficients 53 3.4 TheBinomialTheorem 54 3.5 MultinomialCoefficientandTheorem 55 3.6 TheBirthdayParadoxandMessageAuthentication 57 3.7 HypergeometricProbabilitiesandCardGames 61 Summary 66 Problems 67 4 DISCRETEPROBABILITIESANDRANDOMVARIABLES 75 4.1 ProbabilityMassFunctions 75 4.2 CumulativeDistributionFunctions 77 4.3 ExpectedValues 78 4.4 MomentGeneratingFunctions 83 4.5 SeveralImportantDiscretePMFs 85 4.5.1 UniformPMF 86 4.5.2 GeometricPMF 87 4.5.3 ThePoissonDistribution 90 4.6 GamblingandFinancialDecisionMaking 92 Summary 95 Problems 96 5 MULTIPLEDISCRETERANDOMVARIABLES 101 5.1 MultipleRandomVariablesandPMFs 101 5.2 Independence 104 5.3 MomentsandExpectedValues 105 5.3.1 ExpectedValuesforTwoRandomVariables 105 5.3.2 MomentsforTwoRandomVariables 106 5.4 Example:TwoDiscreteRandomVariables 108 5.4.1 MarginalPMFsandExpectedValues 109 5.4.2 Independence 109 5.4.3 JointCDF 110 5.4.4 TransformationsWithOneOutput 110 5.4.5 TransformationsWithSeveralOutputs 112 5.4.6 Discussion 113 5.5 SumsofIndependentRandomVariables 113 5.6 SampleProbabilities,Mean,andVariance 117 5.7 Histograms 119 5.8 EntropyandDataCompression 120 5.8.1 EntropyandInformationTheory 121 5.8.2 VariableLengthCoding 123 5.8.3 EncodingBinarySequences 127 5.8.4 MaximumEntropy 128 Summary 131 Problems 132 CONTENTS vii 6 BINOMIALPROBABILITIES 137 6.1 BasicsoftheBinomialDistribution 137 6.2 ComputingBinomialProbabilities 141 6.3 MomentsoftheBinomialDistribution 142 6.4 SumsofIndependentBinomialRandomVariables 144 6.5 DistributionsRelatedtotheBinomial 146 6.5.1 ConnectionsBetweenBinomialandHypergeometric Probabilities 146 6.5.2 MultinomialProbabilities 147 6.5.3 TheNegativeBinomialDistribution 148 6.5.4 ThePoissonDistribution 149 6.6 BinomialandMultinomialEstimation 151 6.7 Alohanet 152 6.8 ErrorControlCodes 154 6.8.1 Repetition-by-ThreeCode 155 6.8.2 GeneralLinearBlockCodes 157 6.8.3 Conclusions 160 Summary 160 Problems 162 7 ACONTINUOUSRANDOMVARIABLE 167 7.1 BasicProperties 167 7.2 ExampleCalculationsforOneRandomVariable 171 7.3 SelectedContinuousDistributions 174 7.3.1 TheUniformDistribution 174 7.3.2 TheExponentialDistribution 176 7.4 ConditionalProbabilities 179 7.5 DiscretePMFsandDeltaFunctions 182 7.6 Quantization 184 7.7 AFinalWord 187 Summary 187 Problems 189 8 MULTIPLECONTINUOUSRANDOMVARIABLES 192 8.1 JointDensitiesandDistributionFunctions 192 8.2 ExpectedValuesandMoments 194 8.3 Independence 194 8.4 ConditionalProbabilitiesforMultipleRandomVariables 195 8.5 ExtendedExample:TwoContinuousRandomVariables 198 8.6 SumsofIndependentRandomVariables 202 8.7 RandomSums 205 8.8 GeneralTransformationsandtheJacobian 207 8.9 ParameterEstimationfortheExponentialDistribution 214 8.10 ComparisonofDiscreteandContinuousDistributions 214 viii CONTENTS Summary 215 Problems 216 9 THEGAUSSIANANDRELATEDDISTRIBUTIONS 221 9.1 TheGaussianDistributionandDensity 221 9.2 QuantileFunction 227 9.3 MomentsoftheGaussianDistribution 228 9.4 TheCentralLimitTheorem 230 9.5 RelatedDistributions 235 9.5.1 TheLaplaceDistribution 236 9.5.2 TheRayleighDistribution 236 9.5.3 TheChi-SquaredandFDistributions 238 9.6 MultipleGaussianRandomVariables 240 9.6.1 IndependentGaussianRandomVariables 240 9.6.2 TransformationtoPolarCoordinates 241 9.6.3 TwoCorrelatedGaussianRandomVariables 243 9.7 Example:DigitalCommunicationsUsingQAM 246 9.7.1 Background 246 9.7.2 DiscreteTimeModel 247 9.7.3 MonteCarloExercise 253 9.7.4 QAMRecap 258 Summary 259 Problems 260 10 ELEMENTSOFSTATISTICS 265 10.1 ASimpleElectionPoll 265 10.2 EstimatingtheMeanandVariance 269 10.3 RecursiveCalculationoftheSampleMean 271 10.4 ExponentialWeighting 273 10.5 OrderStatisticsandRobustEstimates 274 10.6 EstimatingtheDistributionFunction 276 10.7 PMFandDensityEstimates 278 10.8 ConfidenceIntervals 280 10.9 SignificanceTestsandp-Values 282 10.10 IntroductiontoEstimationTheory 285 10.11 MinimumMeanSquaredErrorEstimation 289 10.12 BayesianEstimation 291 Problems 295 11 GAUSSIANRANDOMVECTORSANDLINEARREGRESSION 298 11.1 GaussianRandomVectors 298 11.2 LinearOperationsonGaussianRandomVectors 303 11.3 LinearRegression 304 11.3.1 LinearRegressioninDetail 305 CONTENTS ix 11.3.2 StatisticsoftheLinearRegressionEstimates 309 11.3.3 ComputationalIssues 311 11.3.4 LinearRegressionExamples 313 11.3.5 ExtensionsofLinearRegression 317 Summary 319 Problems 320 12 HYPOTHESISTESTING 324 12.1 HypothesisTesting:BasicPrinciples 324 12.2 Example:RadarDetection 326 12.3 HypothesisTestsandLikelihoodRatios 331 12.4 MAPTests 335 Summary 336 Problems 337 13 RANDOMSIGNALSANDNOISE 340 13.1 IntroductiontoRandomSignals 340 13.2 ASimpleRandomProcess 341 13.3 FourierTransforms 342 13.4 WSSRandomProcesses 346 13.5 WSSSignalsandLinearFilters 350 13.6 Noise 352 13.6.1 ProbabilisticPropertiesofNoise 352 13.6.2 SpectralPropertiesofNoise 353 13.7 Example:AmplitudeModulation 354 13.8 Example:DiscreteTimeWienerFilter 357 13.9 TheSamplingTheoremforWSSRandomProcesses 357 13.9.1 Discussion 358 13.9.2 Example:Figure13.4 359 13.9.3 ProofoftheRandomSamplingTheorem 361 Summary 362 Problems 364 14 SELECTEDRANDOMPROCESSES 366 14.1 TheLightbulbProcess 366 14.2 ThePoissonProcess 368 14.3 MarkovChains 372 14.4 KalmanFilter 381 14.4.1 TheOptimalFilterandExample 381 14.4.2 QRMethodAppliedtotheKalmanFilter 384 Summary 386 Problems 388

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.