ebook img

Principles of Statistical Analysis: Learning from Randomized Experiments (Institute of Mathematical Statistics Textbooks) PDF

409 Pages·2022·3.579 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles of Statistical Analysis: Learning from Randomized Experiments (Institute of Mathematical Statistics Textbooks)

PrinciplesofStatisticalAnalysis Thiscompactcourseiswrittenforthemathematicallyliteratereaderwhowantsto learntoanalyzedatainaprincipledfashion.Thelanguageofmathematicsenables clearexpositionthatcangoquitedeep,quitequickly,andnaturallysupportsan axiomaticandinductiveapproachtodataanalysis.Startingwithagoodgroundingin probability,thereadermovestostatisticalinferenceviatopicsofgreatpractical importance–simulationandsampling,aswellasexperimentaldesignanddata collection–thataretypicallydisplacedfromintroductoryaccounts.Thecoreofthe bookthencoversbothstandardmethodsandsuchadvancedtopicsasmultipletesting, meta-analysis,andcausalinference. ERY ARIAS-CASTRO isaprofessorintheDepartmentofMathematicsandinthe Halıcıog˘luDataScienceInstituteattheUniversityofCalifornia,SanDiego,wherehe specializesintheoreticalstatisticsandmachinelearning.Hiseducationincludesa bachelor’sdegreeinmathematicsandamaster’sdegreeinartificialintelligence,both fromE´coleNormaleSupe´rieuredeCachan(nowE´coleNormaleSupe´rieure Paris-Saclay)inFrance,aswellasaPh.D.instatisticsfromStanfordUniversityinthe UnitedStates. Published online by Cambridge University Press “Withtherapiddevelopmentofdata-drivendecisionmaking,statisticalmethodshave becomeindispensableincountlessdomainsofscience,engineering,andmanagement science, to name a few. Ery Arias-Castro’s excellent text gives a self-contained and remarkably broad exposition of the current diversity of concepts and methods developedtotacklethechallengesofdatascience.Simplyput,everyoneseriousabout understandingthetheorybehinddatascienceshouldbeexposedtothetopicscovered inthisbook.” —PhilippeRigollet,Professor DepartmentofMathematics,MassachusettsInstituteofTechnology “A course on statistical modeling and inference has been a staple of many first-year graduate engineering programs. While there are many excellent textbooks on this subject,muchofthematerialisinspiredbymodelsofphysicalsystems,andassuch thesebooksdealextensivelywithparametricinference.Theemergingdatarevolution, on the other hand, requires an engineering student to develop an understanding of statistical inference rooted in problems inspired by data-driven applications, and this book fills that need. Arias-Castro weaves together diverse concepts such as data collection, sampling, and inference in a unified manner. He lucidly presents the mathematical foundations of statistical data analysis, and covers advanced topics on dataanalysis.Withover700problemsandcomputerexercises,thisbookwillservethe needsofbeginnerandadvancedengineeringstudentsalike.” —VenkateshSaligrama,Professor DataScienceFacultyFellow,DepartmentofElectricalandComputerEngineering, DepartmentofComputerScience(bycourtesy),BostonUniversity “In this book, aimed at senior undergraduates or beginning graduate students with a reasonable mathematical background, the author proposes a self-contained and yet concise introduction to statistical analysis. By putting a strong emphasis on the randomization principle, he provides a coherent and elegant perspective on modern statistical practice. Some of the later chapters also form a good basis for a reading group.Iwillberecommendingthisexcellentbooktomycollaborators.” —NicolasVerzelen,AssociateProfessor Mathematics,ComputerScience,Physics,andSystemsDepartment, UniversityofMontpellier “Thistextishighlyrecommendedforundergraduatestudentswantingtograspthekey ideasofmoderndataanalysis.Arias-Castroachievessomethingthatisrareintheart of teaching statistical science – he uses mathematical language in an intelligible and highlyhelpfulway,withoutsurrenderingkeyintuitionsofstatisticstoformalismand proof.Inthisway,thereadercangetthroughanimpressiveamountofmaterialwithout, however,evergettingintomuddywaters.” —RichardNickl,Professor StatisticalLaboratory,CambridgeUniversity Published online by Cambridge University Press INSTITUTE OF MATHEMATICAL STATISTICS TEXTBOOKS EditorialBoard NancyReid(UniversityofToronto) JohnAston(UniversityofCambridge) ArnaudDoucet(UniversityofOxford) RamonvanHandel(PrincetonUniversity) ISBAEditorialRepresentative PeterMu¨ller(UniversityofTexasatAustin) IMSTextbooksgiveintroductoryaccountsoftopicsofcurrentconcernsuitablefor advancedcoursesatmaster’slevel,fordoctoralstudentsandforindividualstudy. Theyaretypicallyshorterthanafullydevelopedtextbook,oftenarisingfrommaterial createdforatopicalcourse.Lengthsof100–290pagesareenvisaged.Thebooks typicallycontainexercises. IncollaborationwiththeInternationalSocietyforBayesianAnalysis(ISBA), selectedvolumesintheIMSTextbooksseriescarrythe“withISBA”designationat therecommendationoftheISBAeditorialrepresentative. OtherBooksintheSeries(*withISBA) 1. ProbabilityonGraphs,byGeoffreyGrimmett 2. StochasticNetworks,byFrankKellyandElenaYudovina 3. BayesianFilteringandSmoothing,bySimoSa¨rkka¨ 4. TheSurprisingMathematicsofLongestIncreasingSubsequences,byDanRomik 5. NoiseSensitivityofBooleanFunctionsandPercolation,byChristopheGarban andJeffreyE.Steif 6. CoreStatistics,bySimonN.Wood 7. LecturesonthePoissonProcess,byGu¨nterLastandMathewPenrose 8. ProbabilityonGraphs(SecondEdition),byGeoffreyGrimmett 9. IntroductiontoMalliavinCalculus,byDavidNualartandEula`liaNualart 10. AppliedStochasticDifferentialEquations,bySimoSa¨rkka¨andArnoSolin 11. *ComputationalBayesianStatistics,byM.Anto´niaAmaralTurkman,Carlos DanielPaulino,andPeterMu¨ller 12. StatisticalModellingbyExponentialFamilies,byRolfSundberg 13. Two-DimensionalRandomWalk:FromPathCountingtoRandomInterlacements, bySergueiPopov 14. SchedulingandControlofQueueingNetworks,byGideonWeiss Published online by Cambridge University Press Published online by Cambridge University Press Principles of Statistical Analysis Learning from Randomized Experiments ERY ARIAS-CASTRO UniversityofCalifornia,SanDiego Published online by Cambridge University Press UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108489676 DOI:10.1017/9781108779197 ©EryArias-Castro2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-48967-6Hardback ISBN978-1-108-74744-8Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Published online by Cambridge University Press Iwouldliketodedicatethisbooktosomeprofessorsthathave,alongthe way, inspired, supported, and mentored me in my studies and academic career,andtowhomIameternallygrateful: DavidL.Donoho mydoctoralthesisadvisor PersiDiaconis myfirstco-authoronaresearcharticle YvesMeyer mymaster’sthesisadvisor RobertAzencott myundergraduatethesisadvisor Published online by Cambridge University Press Incontrolledexperimentationithasbeenfoundnotdifficulttointroduce explicit and objective randomization in such a way that the tests of significance are demonstrably correct. In other cases we must still act inthefaiththatNaturehasdonetherandomizationforus.[...]Wenow recognizerandomizationasapostulatenecessarytothevalidityofour conclusions,andthemodernexperimenteriscarefultomakesurethatthis postulateisjustified. RonaldA.Fisher InternationalStatisticalConferences,1947 Published online by Cambridge University Press Contents Preface xiv Acknowledgements xvii PartI ElementsofProbabilityTheory 1 AxiomsofProbabilityTheory 3 1.1 ElementsofSetTheory 3 1.2 OutcomesandEvents 5 1.3 ProbabilityAxioms 8 1.4 Inclusion-ExclusionFormula 10 1.5 ConditionalProbabilityandIndependence 12 1.6 AdditionalProblems 17 2 DiscreteProbabilitySpaces 19 2.1 ProbabilityMassFunctions 19 2.2 UniformDistributions 20 2.3 BernoulliTrials 21 2.4 UrnModels 25 2.5 FurtherTopics 29 2.6 AdditionalProblems 31 3 DistributionsontheRealLine 34 3.1 RandomVariables 34 3.2 Borelσ-Algebra 34 3.3 DistributionsontheRealLine 36 3.4 DistributionFunction 36 3.5 SurvivalFunction 38 3.6 QuantileFunction 39 ix Published online by Cambridge University Press

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.