Principles of Spacecraft Control Walter Fichter • Ramin T. Geshnizjani Principles of Spacecraft Control Concepts and Theory for Practical Applications WalterFichter RaminT.Geshnizjani InstitutfürFlugmechanikundFlugregelung InstitutfürFlugmechanikundFlugregelung UniversityofStuttgart UniversityofStuttgart Stuttgart,Germany Stuttgart,Germany ISBN978-3-031-04779-4 ISBN978-3-031-04780-0 (eBook) https://doi.org/10.1007/978-3-031-04780-0 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG 2023 Thisworkissubjecttocopyright. Allrightsaresolelyandexclusively licensedbythePublisher,whetherthe wholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storage andretrieval, electronic adaptation, computer software, orbysimilar ordissimilar methodology now knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication. Neitherthepublishernortheauthorsortheeditors giveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissions thatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmaps andinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicatedto EvelineGottzein. Preface The design of spacecraft control systems is, first of all, a system engineering task. This concernsnotonly the controlsystem itself (sensors,actuators,computers,and software) but also the mission objectives and interfaces to other subsystems. With increasingly demanding mission and system requirements, the interconnection between spacecraft controlsystem,instrumentpayload,andplatformbecomesevenmoredistinct.Therefore, a thorough understanding of the functional principles of a spacecraft control system as wellasitslimitationsisrequiredforefficientsystemengineering. Thisbookiswrittenasatextbook.Theobjectiveistoprovidethemathematicalmodels andalgorithmsneededtodevelopathoroughunderstandingofallcontrolsystemfunctions of a rigid-body spacecraft. Relatively simple but practically applicable algorithms are presentedratherthanrecentadvances.Wetrytoavoiddetailedandspecializedissuesthat are of less importance for the fundamentalunderstanding,such as detailed environment models. Furthermore, control problems that can be cast in standard formulations and solved with existing methods are not treated here. Instead, we intend to provide an understanding of the principles, put them in an engineering context, and try to give all explanationsasconciseaspossible. Besides conventional three-axis attitude control systems, the following topics are treatedinthisbook: (cid:129) Controlofagilerotationmaneuversusingcontrolmomentgyros (cid:129) Precisepointingcontrolwitherrorclassesforpointinginstruments (cid:129) Controlsystemswithaccelerometersandfree-flyingtestmasses,whichprovidelow- disturbanceordisturbance-freeenvironments We believe that these topics are of considerable relevance for the design of future spacecraft control systems, especially in the field of science and Earth observation missions. On the other side, the topics of robotic spacecraft and formation flying are excludedhere. Forcontrolsystemdesign,asoundunderstandingoftheunderlyingspacecraftdynam- ics is crucial. Therefore, motion models are described in detail, which includes control momentgyrosandtestmasses. vii viii Preface There are several excellent books in the field of attitude determination. Here, first principlesonlyaredescribedinordertoprovideanoverallunderstanding.Actuationand controlalgorithmsaretreatedinmoredetail,yetwithafocusonbasicprinciples. Thisbookisintendedforgraduatestudentsandpracticingengineerswhoareinterested inspacecraftcontrolsystems.Sincefunctionalprinciplesarebestdescribedwithanalytical modelsandmathematicalnotation,someunderstandinginthefieldsofanalyticalmechan- ics,signalsandsystems,andcontrolsisrequiredasitisusuallytaughtatmaster’slevel. Theauthorstriedtoincludetheirpersonalexperienceinspaceflight,comprisingmany spacecraftandmissionsinthefieldofcommunicationsandconstellations,observationand science,andtechnologydemonstrators. WewouldliketothankmanycolleaguesfromAirbusDefenceandSpaceforinsightful discussions,inparticularNicoBrandt,AndreyKornienko(nowatESA-ESTEC),Thomas Ott, AlexanderSchleicher,Stefan Winkler,and TobiasZiegler. Any correctionsare wel- comeviaemailtowalter.fi[email protected]@mailbox.org. Stuttgart,Germany WalterFichter August2022 RaminGeshnizjani Contents 1 SystemEngineeringBasics......................................................... 1 1.1 ObjectivesandInterfacesofControlSystems ............................... 1 1.2 FunctionalArchitectureandEnvironment ................................... 5 1.2.1 OverviewandTerminology .......................................... 5 1.2.2 ExternalDisturbances................................................ 6 1.2.3 Sensors................................................................ 10 1.2.4 Actuators.............................................................. 14 1.3 DesignProcess................................................................. 16 1.4 SystemDesignRules.......................................................... 17 1.4.1 Performance........................................................... 17 1.4.2 ActuatorSizing ....................................................... 19 1.4.3 ProcessingandSoftware ............................................. 21 1.4.4 Redundancy........................................................... 21 1.5 BudgetsandSpecifications.................................................... 22 1.5.1 KeyParameters ....................................................... 22 1.5.2 SpecificPerformanceParameters.................................... 23 References............................................................................ 27 2 SatelliteMotionModels ............................................................ 29 2.1 RotationalKinematics......................................................... 30 2.1.1 AttitudeParametrization ............................................. 30 2.1.2 Conversions........................................................... 32 2.1.3 DifferentialEquations................................................ 35 2.1.4 Two-AxisInertialPointing........................................... 37 2.2 Single-BodySpacecraftandGyrostat........................................ 38 2.2.1 DynamicsofRotationandTranslation .............................. 38 2.2.2 WheelDynamics...................................................... 42 2.2.3 GravitationalForceandTorque...................................... 43 2.2.4 MultipleWheelsandSummary...................................... 45 ix x Contents 2.3 Single-BodySpacecraftwithControlMomentGyros....................... 46 2.3.1 RotationalDynamics ................................................. 47 2.3.2 FlywheelandGimbalDynamics..................................... 53 2.3.3 SummaryandCMGArrayDynamics............................... 55 2.3.4 Singularities........................................................... 56 2.4 Multi-BodySpacecraftwithTestMass....................................... 62 2.4.1 EquationsofMotion.................................................. 63 2.4.2 Discussion............................................................. 67 References............................................................................ 67 3 RotationalStateDetermination ................................................... 69 3.1 AttitudeDetermination........................................................ 69 3.1.1 ConceptsandtheTwoUnitVectorCase............................. 69 3.1.2 ThreeorMoreUnitVectorMeasurements.......................... 77 3.2 AngularRateEstimation...................................................... 78 3.3 AttitudeObservationandFiltering ........................................... 81 3.3.1 ConceptofaKinematicModel ...................................... 81 3.3.2 YawObservationDuringEarthPointing ............................ 82 3.3.3 Model-BasedFiltering................................................ 83 References............................................................................ 88 4 ActuatorCommanding............................................................. 89 4.1 ReactionWheelActuationandControl ...................................... 89 4.1.1 DistributiontoIndividualWheels.................................... 91 4.1.2 WheelMomentumControl........................................... 92 4.2 ControlMomentGyroActuation............................................. 93 4.2.1 CMGSteeringLaws.................................................. 94 4.2.2 GimbalControlLoop................................................. 98 4.3 ThrusterSelectionandActuation............................................. 101 4.3.1 TorquewithFourThrusters .......................................... 101 4.3.2 ForceandTorque ..................................................... 104 4.3.3 ModulationofSingleThrusters...................................... 109 4.4 MagneticTorquerActuation.................................................. 111 References............................................................................ 112 5 AttitudeandMomentumControl................................................. 115 5.1 ArchitecturesandConcepts................................................... 115 5.2 NonlinearAttitudeandRateControl......................................... 119 5.2.1 RateControl .......................................................... 120 5.2.2 Two-AxisAttitudeAcquisition ...................................... 126 5.2.3 Three-AxisAttitudeControl......................................... 128 Contents xi 5.3 AngularMomentumControl.................................................. 136 5.3.1 MotivationandSingleAxisExample................................ 136 5.3.2 WheelBodyMomentumandNullspaceMomentum............... 138 5.3.3 OptionsforMomentumDesaturation................................ 139 5.3.4 WheelBodyMomentumControl.................................... 140 5.3.5 NullspaceMomentumControl....................................... 142 5.4 LinearAttitudeControl ....................................................... 143 5.4.1 EarthPointingwithMomentumBias................................ 143 5.4.2 PrecisionPointingControl........................................... 148 References............................................................................ 153 6 AccelerometersandDrag-FreeControl.......................................... 155 6.1 Accelerometer................................................................. 155 6.2 DragCompensation ........................................................... 159 6.3 Drag-FreeControlofaCubicTestMass..................................... 160 6.3.1 ObjectiveandPrinciple............................................... 160 6.3.2 ControlLoopStructure............................................... 161 6.3.3 ClosedLoopandControllerDesign ................................. 166 6.4 NotesonSphericalTestMass................................................. 170 References............................................................................ 170 7 ClosingRemarks.................................................................... 173 A CoordinateSystems................................................................. 175 A.1 InertialCoordinateSystem.................................................... 175 A.2 OrbitCoordinateSystem...................................................... 175 A.3 ReferenceAttitudeCoordinateSystem....................................... 175 A.4 SpacecraftBodyCoordinateSystem ......................................... 176 B UsefulToolsofAppliedMathematics............................................. 179 B.1 VectorNotationandCrossProductEquations............................... 179 B.2 SingularValueDecomposition................................................ 180 B.3 ConceptsofLyapunovTheory................................................ 182 B.3.1 Time-InvariantSystems .............................................. 182 B.3.2 Time-VaryingSystems ............................................... 184 B.4 FloquetTheory ................................................................ 185 References............................................................................ 187 C Gravity-GradientForce............................................................ 189 Index...................................................................................... 191