ebook img

Principles of Space-Time Adaptive Processing PDF

549 Pages·2002·20.685 MB·English
by  KlemmRichard
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles of Space-Time Adaptive Processing

P r i n c i p l es of s p a c e - t i me a d a p t i ve p r o c e s s i ng R i c h a rd K l e mm The Institution of Electrical Engineers Published by: The Institution of Electrical Engineers, London, United Kingdom ©2002: The Institution of Electrical Engineers This publication is copyright under the Berne Convention and the Universal Copyright Convention. All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, this publication may be reproduced, stored or transmitted, in any forms or by any means, only with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Inquiries concerning reproduction outside those terms should be sent to the publishers at the undermentioned address: The Institution of Electrical Engineers, Michael Faraday House, Six Hills Way, Stevenage, Herts. SG1 2AY, United Kingdom While the author and the publishers believe that the information and guidance given in this work is correct, all parties must rely upon their own skill and judgment when making use of it. Neither the author nor the publishers assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed. The moral right of the author to be identified as author of this work has been asserted by him/her in accordance with the Copyright, Designs and Patents Act 1988. British Library Cataloguing in Publication Data Klemm, Richard Principles of space-time adaptive processing. (Radar, sonar, navigation and avionics series; no. 12) 1. Moving target indicator radar I. Title II. Institution of Electrical Engineers 621.3'84S ISBN 0 85296 172 3 Printed in England by MPG Books Ltd., Bodmin, Cornwall To my wife Erika who likes living beings much better than technical matters Biography Richard Klemm was born in 1940 in Berlin, Germany. He received his Dipl.-Ing. and Dr.-Ing. degrees in communications from the Technical University of Berlin in 1968 and 1974, respectively. From 1968 to 1976 he was with FGAN-FFM (Research Institute for Radio and Mathematics, a branch of the German Defence Research Establishment) at Wachtberg, Germany. His main field of activity has been adaptive clutter and jammer suppression for radar. From 1977 to 1980 he was with SACLANT ASW Research Centre, La Spezia, Italy, where he conducted studies on spatial signal processing for active and passive sonar, with emphasis on matched field processing for shallow water applications. Since 1980 he has again been with FGAN-FFM where he has been working on aspects of anti-jamming and detection of moving targets for moving sensor platforms. He has published numerous articles on various aspects of radar and sonar signal processing, with particular emphasis on space-time adaptive processing. He is a permanent reviewer of renowned journals such as IEEE Transactions on Aerospace Systems and IEE Proc. Radar, Sonar and Navigation. Richard Klemm has given several invited seminars on STAP in different countries. Dr. Klemm has been a member of the Sensor and Propagation Panel of AGARD (nowadays the RTO-SET panel) and is a member of Commission C (Signals and Systems) of URSI. He chaired several AGARD and RTO symposia and was chairman of the AGARD Avionics Panel. He initialised and chaired the first European Conference on Synthetic Aperture Radar (EUSAR'96), March 1996, in Konigswinter, Germany. In his spare time Richard Klemm is a passionate classical pianist. Under the headline Science and Music he likes to combine his technical and musical sides by giving piano recitals at technical conferences. Dr. Klemm is married and has three children and four grandchildren. Preface to the first edition Space-time processing has become very popular in the past few years. In particular space-time adaptive processing (STAP) with application to airborne MTI radar has become a key topic of international radar conferences. Although mainly used for airborne MTI (moving target indication) radar other applications are possible. Air- and spaceborne radar plays an important role for civilian and military use. There are numerous applications such as earth observation, surveillance, reconnaissance and others. Among a large number of facets of air- and spaceborne radar the capability of moving target detection plays an important role. This book focuses on a specific part of air- and spaceborne MTI radar: the suppression of clutter returns. Look at the following simple formula It shows the dependence of the clutter Doppler frequency on the angle between an individual clutter scatterer and the flight direction. It seems hard to believe that one can write a thick book on such a simple matter. But it's true - this book deals with the consequences arising from this little formula. The directional dependence of the clutter Doppler frequency as given by the above formula leads to the concept of adaptive space-time clutter filtering which is expanded in some detail. The design of suboptimum processors promising near optimum performance at low cost, reduced computing time, weight, energy consumption, etc., in other words, enabling real-time operation on small radar platforms, is the main goal of this book. The basis for space-time signal processing is a multichannel phased array antenna which provides spatial sampling of the backscattered echo field. Since I started this work the radar world has changed considerably. While 15 years ago phased array antennas were still considered to be futuristic because the technology was still in an early stage they are nowadays state of the art. In the same timeframe dramatic progress in digital technology took place which led to powerful programmable signal processors, including parallel processing architectures. Moreover, a lot of theoretical work has been devoted to the development of new array processing techniques and algorithms. For a large number of applications the next generation of radar will include active multichannel phased array antennas. Such radar offers high flexibility, reliability, and, in conjunction with appropriate array processors, the potential of multichannel signal processing. In other words, the technology for real-time airborne MTI is there. When I started working on airborne MTI there was not much material available in the open literature. The first publications date back to the 1970s (papers on DPCA even earlier). The first paper on adaptive clutter cancellation for airborne radar is the one by BRENNAN et al. [53]. In the meantime research on space-time adaptive processing, nowadays widely known by its acronym 'STAP', has grown tremendously. There are activities all over the world, especially in the USA and China. A lot of the existing literature is concerned with the problem of suboptimum processor design. 'Suboptimum' means that the clutter rejection performance should be as close as possible to the optimum processor, however at much less cost and complexity. It was not my intention to summarise and compare all the various technical solutions proposed in the literature - this would exceed the limits of such book, and at the end the reader is still left with the problem of selecting his favourite solution. I tried instead to present as much insight as possible into the problems in order to help the reader understand the phenomena associated with adaptive space-time processing. I hope the reader will appreciate this. Besides taking a lot of literature by other authors into consideration I tried to summarise mainly the insights and results of about 15 years of my own research in the field of air- and spaceborne MTI radar. In that sense this book certainly does not cover the whole STAP area. However, there are nowadays so many proposals for STAP processor architectures in the literature that it is hardly possible to describe all of them or even to compare them. By following the line of my own research and communicating the insights I obtained I hope to contribute to a better understanding of the associated problems. Maybe this makes this book even more valuable than presenting an overview of the existing literature. The text includes in essence a selection of numerical results obatined for linear antenna arrays. These results are based on a specific parameter constellation which is given in Chapter 2. Consequently, the results are not exhaustive and are not meant to be. It is certainly not possible to address all potential combinations of radar parameters. Moreover, linear arrays are normally not used in radar applications. However, they are relatively easy to handle numerically and exhibit some fundamental properties which form a good basis for understanding the various effects. In that sense the examples presented are meant to be a guideline for the radar designer on how to proceed finding the solution for his actual problem. I should mention that all beforementioned results have been obtained by calculations based on simple signal and clutter models. I agree that beyond the information presented to the reader many open questions will remain, which are in part related to the 'real world', i.e., the limited validity of computer models. Such limitations are mostly caused by differences between an ideal and a real radar sensor and also by the statistical behaviour of the target and clutter environment. Some of the results obtained may turn out to be too optimistic and need experimental verification. Nevertheless, I am convinced that in general such model studies are very useful to understand the mechanisms behind the observed phenomena, and can be used to pre-select promising practical solutions. Following this line some of the results presented here have contributed to international projects such as EUCLID, SWORD and AMSAR. It is assumed that the reader has some basic knowledge of pulse Doppler radar, including the radar range equation, conventional MTI techniques, antenna arrays, signal and array processing, and is familiar with some fundamentals of statistical detection theory and complex matrix algebra. My book is intended to be a systematic introduction to airborne MTI system design. It is organised in the following way: First a brief overview of potential array and signal processing techniques and the signal and clutter models used is presented (Chapters 1- 3). Some basic properties of airborne clutter are summarised. Secondly the discussion of space-time adaptive clutter filters starts with optimum processing as given by array processing theory (Chapter 4). In this part the basic behaviour of space-time clutter suppression techniques is discussed, keeping in mind that the implementation of such techniques in practical systems is not realistic. In the sequel (Chapters 5-7) suboptimum processing techniques based on linear arrays will be presented which are more and more adapted to practical requirements, including aspects of on-board and real-time processing. The techniques discussed in these chapters are based on signal processing in a vector subspace. Such techniques have been frequently referred to as partially adaptive. Chapter 8 deals with non-linear antenna configurations. Circular planar arrays with realistic numbers of sensors are discussed. Chapter 9 deals with space-frequency techniques. In Chapter 10 aspects of clutter suppression under jamming conditions are considered. In particular the question is raised whether clutter and jamming should be filtered simultaneously or by cascaded anti-jamming/anti-clutter filters. In Chapter 11 two applications for space-time processing in SAR or ISAR are presented. Although the applications are quite different in nature it is shown that they are based on the same mathematical background. In Chapter 12 finally miscellaneous aspects (array errors, aspects of implementation, computational complexity of processing techniques, etc.) and issues of space-time filtering are presented. Each of the twelve chapters concludes with a short summary highlighting the major findings of the individual chapter. The book concludes with a listing of more than 350 references which I collected up to the last moment before delivering the manuscript. By doing so I intended to include recent literature as much as possible. Although this book contains a lot of numerical results it is not meant to be a handbook from which the user can extract technical data. It is merely intended to present the principles of space-time processing and to show the radar designer how to find his personal solution. In that sense I also anticipate that the book may serve as a background document for courses at universities or other technical institutions. I hope sincerely that the reader will find this book useful and will be stimulated to do his own research in this magic area. The motivation to summarise all the work done on air- and spaceborne MTI radar in the past 15 years originates from several seminars which I gave on invitation by Ericsson, Sweden, and by three universities in China. The interest in this field is currently very strong so that I felt I should communicate as many details as I know to the public. There is at least one item which I have contributed to the world of space- time adaptive processing: to my knowledge all authors working in this field denote the number of antenna elements by TV and the number of echo pulses by M as I did in my paper of 1983 [238]. I will keep with that tradition. Acknowledgements. I would like to thank Dr. habil. J. Grosche, director of FGAN-FFM, for his generous and enthousiastic support of this work. Dr. Wirth, head of the Electronics Department of FFM, suggested that I start research into adaptive airborne MTI as early as 1980. His continuous encouragement and numerous fruitful discussions and suggestions improved my understanding of the problems considerably. Dr. Wirth's co-operation is gratefully acknowledged. I would like to thank my colleagues Dr. U. Nickel and Dr. J. Ender for contributing a number of valuable ideas. Furthermore, I owe thanks to O. Kreyenkamp for numerous discussions and helpful suggestions. I thank Dr. W.-D. Wirth and O. Kreyenkamp for their help in proofreading the manuscript. In particular I would like to thank Mrs. G. Gniss. She carried out all the numerical evaluation and listened to my explanations of various physical matters with patience. Thus she helped me to understand at lot of the phenomena just by listening. It would have been impossible to write such a book without her continuous and ambitious assistance. More than 25 years of excellent co-operation with Mrs. Gniss are gratefully acknowledged. I am indebted to H. Wolff of the German Ministry of Defence for his continuous support of my research activities over many years which have now been summarised in this book. I feel obliged to thank Osten Erikmats of Ericsson, Molndal, Sweden, who invited me to give a seminar at the radar division of his company. This invitation encouraged me to compile all my material on space-time processing which in turn stimulated the idea of summarising my work in a book. I owe many thanks to the Chinese Professors Peng Yingning (Beijing), Wu Shunjun and Bao Zheng (Xi'an), and Huang Shun-Ji (Chengdu), for offering me the opportunity to give lectures on space-time adaptive processing at their universities. The discussions with them as well as with their colleagues and students were of high value for this undertaking. Writing a book means first of all learning a great deal. I wish to thank all those authors who contributed to the field of space-time adaptive processing with publications and contributions to international conferences. I apologize for any publication I may have overlooked. The excellent co-operation with the publisher, in particular the commissioning editor, J. Simpson, should be emphasised. I feel indebted to Prof. H. Griffiths, editor of Proc. IEE on Radar, Sonar and Navigation, for his encouraging support. I owe many thanks to the editors of the IEE radar series, Prof. E. D. R. Shearman and P. Bradsell, and also C. Wigmore and Dr. N. Steward of Siemens-Plessey for reviewing the manuscript and giving many helpful suggestions. In particular I am grateful to Dr. John Mather of DERA for carefully reviewing the manuscript. His numerous comments and suggestions improved considerably the quality of this book. R. Klemm, Wachtberg, 1997 Preface to the second edition The worldwide interest in space-time adaptive processing continues to be strong. The little Doppler formula on which all STAP activities (and, moreover, SAR) are based (see the preface to the first edition) has not lost its magic fascination. No future military air- or spaceborne observation radars will be designed without the capability of slow moving target detection. We felt that a second edition of this book would be useful as an introduction to this still fascinating field. In the meantime many new results and additional insight into the various problems have been gained. The second edition has been enlarged by almost 30%. In detail the following major changes have been made: • A few errata have been corrected. I am grateful for all the advice I received from several readers. • A new Chapter 10 has been added which deals with the effect of radar ambiguities in range and Doppler. • The new Chapter 12 gives an introduction to space-time adaptive clutter suppression for bistatic radar configurations • The new Chapter 14 addresses the problem of estimating the target azimuth and velocity in the presence of Doppler coloured clutter. The Cramer-Rao bounds for various processor architectures are treated as well as the impact of radar parameters on the estimation accuracy. The performance of adaptive monopulse is studied. • The degradation of the performance of the space-time FIR filter by temporal decorrelation due to internal clutter motion has been added (Chapter 7). • The effect of range walk has been incorporated in Chapters 2, 3, 4 and 7. • The effect of Doppler spread in large range bins has been analysed (Chapters 2 and 4) • Some discussion of the range dependence of the clutter Doppler and related compensation techniques has been added to Chapter 10. • The use of the space-time FIR filter with staggered PRI has been added to Chapter 10. • The bibliography has been updated by including over 210 recent publications. I hope that the reader will appreciate this effort and that the second edition will be received by the international radar community in the same way as the first one. Acknowledgements. I would like to thank Prof. Dr. K. Krucker, Director of FGAN-FHR, for his support of this work. Dr. J. Ender, head of FGAN-FHR/EL, contributed numerous knowledgeable suggestions which improved my insight into certain problems. I am indebted to my colleague Dr. U. Nickel who contributed a number of valuable ideas. As in the first edition Mrs. G. Gniss performed the numerical evaluation. I am grateful for her enthusiastic assistance in completing this work. I feel obliged to thank Prof. G. Galati (Italy), R. T. Hill, Dr. E. J. Ferraro (USA), Dr. P. Bhartia (Canada), G. P. Quek (Singapore), Dr. E. Velten, Prof. K. Krucker (Germany), Dr. W. Klembowski (Poland), Prof. B. Kutuza (Russia), and Dr. S. Kent (Turkey) for offering me the opportunity to give seminars on space-time adaptive processing in their organisations and to discuss details with their colleagues and students. I am particularly grateful to to P. Richardson who thoroughly reviewed the entire manuscript. He made a number of valuable suggestions which have all been incorporated in the text. Finally, the excellent cooperation with the publisher, especially the commissioning editor, Dr. R. Harwood, and the production editor, Diana Levy, is greatly appreciated. R. Klemm, Wachtberg, 2001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.