ebook img

Principles of River Hydraulics PDF

230 Pages·2018·11.261 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles of River Hydraulics

Aronne Armanini Principles of River Hydraulics Principles of River Hydraulics Aronne Armanini Principles of River Hydraulics 123 Aronne Armanini Department ofCivil, Mechanicaland Environmental Engineering University of Trento Trento Italy Translated byGiusi Zummo ISBN978-3-319-68099-6 ISBN978-3-319-68101-6 (eBook) https://doi.org/10.1007/978-3-319-68101-6 LibraryofCongressControlNumber:2017953816 TranslationfromtheItalianlanguageedition:PrincipidiidraulicafluvialebyBios,©editorialeBIOS, 2ndedition,2005.AllRightsReserved. ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my family Preface The intention is to collect my lecture notes for the introduction to River Engineering, a subject I have been teaching to master’s students in Environmental andLandEngineeringattheUniversityofTrentosince1987.Thiscourseisdivided intotwoparts:theformerisdevotedtothefundamentalsofriverhydraulics,andthe latterdealswithcalculationanddesigntoolsusedforriverrestoration.Infullregard to the location, the course especially focuses on mountain and piedmont streams which are subject to intense sediment transport and continuous morphological variations. This first volume contains the key topics of natural watercourse hydraulics. I deliberately left out, and took for granted, the topics conventionally dealt with in manuals of hydraulics, hydrodynamics and hydrology, as well as the problemof unsteadyriver flows addressedwiththe traditional fixed-bed approach. On the other hand, some hydraulics topics usually neglected in traditional text- books, for example, vegetation and macro-roughness effects on flows, are consid- ered in the first chapter, in that they are typical of several gravel bed rivers. The other chapters are entirely devoted to mobile-bed river hydraulics. I also tried to emphasize a few aspects which in the past may have been neglected for a limited knowledge of phenomena but currently required to identify and solve some prob- lems,forexample,theeffectofnonuniformsedimentsandmathematicalmodeling. Thestructureofthebookisthesameasmanyriverhydraulicsorsedimenttransport manuals, both classical like those by H. Walter Graf, M. Yalin, and Pieter Ph. Jansen et al., and most recent like Pierre Julien’s; it also takes some important internet contributions by Gary Parker into account. Sometimes, the formulation of the problems may appear too analytical, which is undoubtedly helpful for engineering students but rather complex for those who will use it as a reference bookforapplications.Inmyopinion,however,thestudyofsedimenttransportand fluvial morphology has always been too empirical, without any attempt to take a theoreticallookatthesubject.Nowadays,suchamethodisoutdated:asamatterof fact, design choices demonstrated a reckless disregard of long-term consequences on watercourse dynamics and, last but not least, hydraulic engineers were highly competent in the fixed-bed hydraulics, but somewhat reluctant to replace their conceptualframeworksinadequateforthestudyofnaturalwaterstreamswhichare vii viii Preface simplymobile-boundaryflows.ThisbookfirstappearedinItalianin1999underthe title Principi di idraulica fluviale (Principles of River Hydraulics); this is the English version, revised and expanded. Special thanks are due to Giuseppina Zummo for her professional competence and accuracy in the English translation. IwouldliketothankPaoloScarfielloforhisvaluablehelpwithseveralgraphsand chartsofthebook.IamdeeplygratefultomycolleaguesoftheDepartmentofCivil and Environmental Engineering at the University of Trento for the precious moments of discussion on nearly all the topics covered in the book, especially to Michele Larcher, Giorgio Rosatti, and Luigi Fraccarollo. Finally, thank to Giulia Rossi for her precious help in reviewing the page proofs of the book. Trento, Italy Aronne Armanini August 2017 Contents 1 Roughness in Fixed-Bed Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Uniform Flow in Circular Pipes. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Uniform Flow in Compact Cross-Sectional Channels . . . . . . . . . . 2 1.3.1 Secondary Circulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Low Submergence Flow. . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Resistance Due to Vegetation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 Channels with Fully Submerged Flexible Vegetation . . . . . 12 1.4.2 Channels with Emergent Vegetation . . . . . . . . . . . . . . . . . 16 1.5 Compound Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Channels with Composite Wall Roughness . . . . . . . . . . . . . . . . . 21 1.6.1 Shear Stress on Each Portion of the Wetted Perimeter . . . . 25 1.6.2 Limits of Einstein-Horton’s Criterion . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Introduction to Sediment Transport . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Characterization of Solid Particles . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 Sediment Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.2 Geometric Classification. . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.3 Empirical Formulae for the Fall Velocity in Still Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Sediment Transport Capacity, Solid Discharge, Wash Load, and Bed Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 Sediment Transport Mechanisms: Bed Transport and Suspended Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5 Bed Forms: Ripples, Dunes, and Antidunes . . . . . . . . . . . . . . . . . 43 2.5.1 Classification of Bed Forms . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ix x Contents 3 Initiation of Sediment Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 The Shields Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Limits and Extensions of the Shields Theory . . . . . . . . . . . . . . . . 54 3.3.1 Definition of the Incipient Motion Condition. . . . . . . . . . . 55 3.3.2 Effect of the Streamline Bed Slope. . . . . . . . . . . . . . . . . . 56 3.3.3 Effect of Side Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.4 Effect of the Relative Submergence . . . . . . . . . . . . . . . . . 60 3.3.5 Effect of Size Heterogeneity of Bed Material. . . . . . . . . . . 61 3.3.6 Effect of Bed Armoring . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Effect of the Section Form on the Incipient Motion Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Incipient Motion Condition in Channel Bends . . . . . . . . . . . . . . . 66 3.5.1 Critical Mobility Reduction in Bends Induced by Secondary Circular Flows . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Effects on the Inner Bank Due to the Drop of the Free Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6 Other Criteria for Defining the Incipient Motion Condition. . . . . . 71 3.6.1 Critical Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.2 Critical Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.3 Critical Froude Number and Critical Velocity . . . . . . . . . . 73 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Resistance to Flow in Mobile-Bed Channels . . . . . . . . . . . . . . . . . . . 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Einstein’s Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Engelund’s Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4 Van Rijn’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Bedload Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Einstein’s Bedload Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.1 Limits of Einstein’s Approach . . . . . . . . . . . . . . . . . . . . . 96 5.2.2 Einstein’s Equation for qb !1. . . . . . . . . . . . . . . . . . . . 96 5.2.3 Einstein’s Equation for q !0. . . . . . . . . . . . . . . . . . . . . 97 b 5.2.4 Effect of Material Non-uniformity. . . . . . . . . . . . . . . . . . . 98 5.3 Ballistic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.4 Sediment Transport Formulae Implying a Critical Threshold for the Incipient Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4.1 Du Boys Bedload Approach. . . . . . . . . . . . . . . . . . . . . . . 104 5.4.2 Meyer-Peter and Müller Formula . . . . . . . . . . . . . . . . . . . 106 5.4.3 Smart and Jäggi Formula . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4.4 Van Rijn Bedload Formula. . . . . . . . . . . . . . . . . . . . . . . . 107 Contents xi 5.4.5 Other Formulae Structurally Similar to the Du Boys Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5 BedloadFormulaeExplicitlyDependingontheLiquidDischarge or on the Stream Velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5.1 Schoklitsch’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.6 Sediment Transport of Non-uniform Size Mixtures. . . . . . . . . . . . 109 5.6.1 Dynamic Armoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 Suspended Transport and Total Transport. . . . . . . . . . . . . . . . . . . . 115 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3 Distribution of Suspended Concentrations in Equilibrium Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.1 The Rouse Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.2 The Lane Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.3 The Reference Concentration ca . . . . . . . . . . . . . . . . . . . . 122 6.4 Suspended Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5 Total Solid Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.5.1 Monomial Formulae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7 Mathematical Models of Riverbed Evolution . . . . . . . . . . . . . . . . . . 131 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2 Mass Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.1 Equation of Conservation of Solid Mass . . . . . . . . . . . . . . 133 7.2.2 Mass Conservation of the Liquid Phase . . . . . . . . . . . . . . 135 7.2.3 Total Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.3 Momentum Conservation Equations. . . . . . . . . . . . . . . . . . . . . . . 137 7.3.1 Momentum Conservation Equation of the Liquid Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.3.2 Momentum Conservation of the Solid Phase . . . . . . . . . . . 139 7.3.3 Momentum Conservation of the Mixture. . . . . . . . . . . . . . 139 7.4 Water-Sediment Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.4.1 System in Normal Form. . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.4.2 Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.5 Stationary Solutions: Section Enlargements and Contractions . . . . 148 7.6 Simplified Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.6.1 The Simple Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.6.2 The Parabolic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.6.3 Complete Hyperbolic Model. . . . . . . . . . . . . . . . . . . . . . . 157 7.7 Adaptive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.8 Non-uniform Sediment Models . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.8.1 Physical Meaning of the Mixing Layer . . . . . . . . . . . . . . . 164

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.