The science of probability theory was first noticed in the middle of the 18th century with the study of games of chance. As time went by, the applications of this science expanded to the point where today, the theory of probability plays a crucial role in recognizing, modeling, and improving many uncertain real-world phenomena. The book in front of you is the result of several years of studying, using, and teaching the concepts of probability theory and its applications. Despite the many complexities of this science, the main goal and focus of this book are to present its contents simply and fluently and to help students create a deep understanding of the subjects of this science. To achieve this goal, each chapter of the book is divided into two main parts. In the first part, the text of each chapter is explained in a simple way and has examples that increase learning and understanding of the content. Since the authors believe solving different problems is the best way to get good at probability theory and fully understand it, the second half of each chapter in the book is filled with many classified problems. The order of the problems is also designed such that the readers feel themselves progressing along the learning path step by step. In the first chapter of this book, the main ideas of combinatorial analysis, which is the primary way to figure out probabilities, are explained. In Chapter 2, the definition of probability, the principles of probability theory, and the main methods of probability calculation are stated, and in Chapter 3, conditional probability and its applications are presented. In Chapter 4, random variables are addressed, and in Chapter 5, the expected value of random variables and some of their properties are mentioned. Also, in Chapters 6 and 7, some widely used discrete and continuous random variables are introduced. In Chapter 8, joint random variables and conditional distributions are discussed, and in Chapters 9 and 10, the distribution and expected value of a function of several random variables are addressed. Finally, in Chapter 11, expected value of multiple random variables, correlation, and covariance are explained. For those who encounter difficulties in solving the problems in this book, another book titled "Solution Manual for Principles of Probability and its Applications" has been prepared by the authors, in which there are explanatory answers to all questions and, in many cases, more than one solution to the problems is proposed. The contents of this book are not without flaws, and we incentivize our dear readers to contact us via [email protected] if they find any weak points or faults in the book or have any comments or suggestions. Ultimately, the authors hope that this collection can be effective in getting to know and learning the science of probability better and be a step, however small, in developing this science. CHAPTER 1: COMBINATORIAL ANALYSIS ............................................................................................................................................... 1 1.1. Introduction ....................................................................................................................................................................................................... 1 1.2. The Basic Principle of Counting ................................................................................................................................................................... 1 1.3. Permutations .................................................................................................................................................................................................... 5 1.3.1 Permutation of “n” Distinct elements .......................................................................................................................................... 5 1.3.2 Permutation of “r” Distinct elements from “n” Distinct elements ........................................................................................ 7 1.3.3 Permutation of “n” Elements, some of which have the Same value ...................................................................................... 8 1.3.4 Permutation of “n” Distinct elements at a Round table ......................................................................................................... 10 1.4. Combinations ................................................................................................................................................................................................. 12 1.5. Significant Identities of the Combinatorial Topic ................................................................................................................................ 16 1.6. The Ball and Urn (cell) Model ..................................................................................................................................................................... 23 1.7. Chapter Problems .......................................................................................................................................................................................... 48 CHAPTER 2: AXIOMS OF PROBABILITY ................................................................................................................................................ 58 2.1. Introduction .................................................................................................................................................................................................... 58 2.2. Random Trial, Sample Space, and Event ................................................................................................................................................ 58 2.3. An Introduction to the Algebra of Sets ..................................................................................................................................................... 59 2.4. Definition of Probability .............................................................................................................................................................................. 64 2.5. Some Probabilistic Propositions Resulting from Principles of the Probability Theory ............................................................... 79 2.6. Chapter Problems ..........................................................................................................................................................................................96 CHAPTER 3: CONDITIONAL PROBABILITY AND INDEPENDENCE ..................................................................................................... 106 3.1. Introduction .................................................................................................................................................................................................. 106 3.2. Conditional Probability Concept ............................................................................................................................................................. 106 3.3. The Law of Multiplication in Probability ............................................................................................................................................... 113 3.4. Independence of Events .............................................................................................................................................................................. 115 3.5. The Law of Total Probability .................................................................................................................................................................... 125 3.6. Bayes' Law ..................................................................................................................................................................................................... 133 3.7. The Law of Total Probability in Reduced Space .................................................................................................................................. 138 3.8. Chapter Problems ........................................................................................................................................................................................ 143 CHAPTER 4: RANDOM VARIABLES ...................................................................................................................................................... 162 4.1. Introduction .................................................................................................................................................................................................. 162 4.2. Types of Random Variables ....................................................................................................................................................................... 166 4.3. Discrete Random Variables ....................................................................................................................................................................... 167 4.4. Continuous Random Variables ................................................................................................................................................................ 169 4.5. Mixed Random Variables ........................................................................................................................................................................... 174 4.6. Cumulative Distribution Function ......................................................................................................................................................... 176 4.7. Some Important Values of Random Variables ...................................................................................................................................... 181 4.8. The Distribution of a Function of a Random Variable ....................................................................................................................... 184 4.9. Conditioning on Continuous Space ........................................................................................................................................................ 188 4.10. Chapter Problems ......................................................................................................................................................................................... 191 CHAPTER 5: EXPECTED VALUE .......................................................................................................................................................... 206 5.1. Introduction ................................................................................................................................................................................................. 206 5.2. The Expected Value of Discrete, Continuous, and Mixed Random Variables ............................................................................. 209 I 5.3. Some notes about the Expected Value of a Random Variable .......................................................................................................... 214 5.4. Expected Value of a Function of a Random Variable .........................................................................................................................223 5.5. Central Tendency Measures of a Random Variable ........................................................................................................................... 227 5.6. Dispersion Measures of a Random Variable........................................................................................................................................ 228 5.6.1. Variance ......................................................................................................................................................................................... 228 5.6.2. Standard Deviation ..................................................................................................................................................................... 230 5.6.3. Expected Distance from the Mean ............................................................................................................................................ 231 5.7. Other Measures of a Random Variable .................................................................................................................................................. 231 5.8. Approximate Expected Value of The Function of a Random Variable ...........................................................................................232 5.9. Moment Generating Function ................................................................................................................................................................ 233 5.10. Factorial Moment Generating Function .............................................................................................................................................. 238 5.11. Distribution and Expected Value Of 𝑿|𝒂≤𝑿≤𝒃 .............................................................................................................................. 242 5.12. Markov's and Chebyshev's Inequalities .................................................................................................................................................. 244 5.12.1. Markov's Inequality ...................................................................................................................................................................... 244 5.12.2. Chebyshev's Inequality ................................................................................................................................................................ 246 5.12.3. One-Sided Chebyshev's Inequality ........................................................................................................................................... 248 5.13. Chapter Problems ........................................................................................................................................................................................ 251 CHAPTER 6: SPECIAL DISCRETE RANDOM VARIABLES .................................................................................................................... 264 6.1. Introduction ................................................................................................................................................................................................. 264 6.2. The Bernoulli Random Variable.............................................................................................................................................................. 264 6.3. The Binomial Random Variable .............................................................................................................................................................. 269 6.3.1. Properties of The Binomial Random Variable........................................................................................................................ 272 6.4. The Geometric Random Variable ............................................................................................................................................................ 275 6.4.1. The Mean And Variance of The Geometric Distribution .................................................................................................... 277 6.4.2. The Memoryless Property of The Geometric Distribution .................................................................................................. 279 6.4.3. The Geometric Random Variable of Failure Type ................................................................................................................ 282 6.5. The Negative Binomial Random Variable (Pascal) ............................................................................................................................ 283 6.5.1. The Properties of Negative Binomial Random Variable ..................................................................................................... 286 6.5.2. The Negative Binomial Random Variable of Failure Type................................................................................................. 289 6.5.3. The Problem of Points ................................................................................................................................................................. 290 6.6. The Poisson Random Variable .................................................................................................................................................................. 291 6.6.1. The Properties of The Poisson Random Variable ................................................................................................................. 295 6.6.2. The Poisson Process ...................................................................................................................................................................... 297 6.6.3. Approximating The Probability Function of The Number Of Successes in n Dependent Trials .............................. 299 6.7. The Hypergeometric Random Variable................................................................................................................................................. 304 6.7.1. The Properties of Hypergeometric Random Variable ......................................................................................................... 305 6.8. The Discrete Uniform Random Variable .............................................................................................................................................. 309 6.9. Chapter Problems ......................................................................................................................................................................................... 311 CHAPTER 7: SPECIAL CONTINUOUS RANDOM VARIABLES .............................................................................................................. 333 7.1. Introduction ................................................................................................................................................................................................. 333 7.2. Continuous Uniform Random variable ................................................................................................................................................ 333 7.2.1. Some Properties of a Continuous Uniform Random Variable .......................................................................................... 338 7.3. Normal Random Variable ......................................................................................................................................................................... 340 7.3.1. Some Properties of a Normal Random Variable .................................................................................................................... 341 7.3.2. The Normal Distribution Approximation to the Binomial Distribution .........................................................................352 7.4. The Exponential Random Variable .........................................................................................................................................................355 7.4.1. Some Properties of the Exponential Distribution ................................................................................................................ 359 7.4.2. The Two-Parameter Exponential Distribution ..................................................................................................................... 361 7.5. The Gamma Random Variable ................................................................................................................................................................ 362 7.5.1. The Three-Parameter Gamma Random Variable ............................................................................................................................... 367 7.6. Other Continuous Distributions............................................................................................................................................................. 368 7.6.1. The Beta Random Variable ........................................................................................................................................................ 368 7.6.2. The Weibull Random Variable ...................................................................................................................................................370 II 7.6.3. The Cauchy Distribution ..............................................................................................................................................................371 7.6.4. The Pareto Random Variable ......................................................................................................................................................371 7.7. The Failure Rate Function ......................................................................................................................................................................... 372 7.8. Chapter Problems ........................................................................................................................................................................................ 376 CHAPTER 8: JOINT RANDOM VARIABLES AND CONDITIONAL DISTRIBUTION ............................................................................... 394 8.1. Introduction ................................................................................................................................................................................................. 394 8.2. Joint Random Variables ............................................................................................................................................................................ 394 8.2.1. Jointly Discrete Random Variables .......................................................................................................................................... 394 8.2.2. Jointly Continuous Random Variables .................................................................................................................................... 399 8.3. Some well-known Joint Distributions ................................................................................................................................................... 405 8.3.1. The Multinomial Distribution ................................................................................................................................................... 405 8.3.2. The Multivariate Hypergeometric Distribution ................................................................................................................... 406 8.3.3. The Bivariate Uniform Random Variable ............................................................................................................................... 407 8.3.4. The Bivariate Normal Distribution .......................................................................................................................................... 410 8.4. The Independence of Random Variables................................................................................................................................................ 410 8.5. Conditional Distributions ......................................................................................................................................................................... 418 8.5.1. Discrete Case .................................................................................................................................................................................. 418 8.5.2. Continuous Case ............................................................................................................................................................................ 421 8.6. Chapter Problems ........................................................................................................................................................................................ 427 CHAPTER 9: DISTRIBUTION OF A FUNCTION OF MULTIPLE RANDOM VARIABLES ........................................................................... 442 9.1. Introduction .................................................................................................................................................................................................. 442 9.2. Distribution of a Function of Multiple Random Variables................................................................................................................ 442 9.2.1. Discrete Case .................................................................................................................................................................................. 442 9.2.2. Continuous Case ............................................................................................................................................................................ 444 9.3. The Sum of Independent Random Variables ....................................................................................................................................... 448 9.4. The Central Limit Theorem ...................................................................................................................................................................... 457 9.5. Order Statistics ............................................................................................................................................................................................ 461 9.6. Chapter Problems ......................................................................................................................................................................................... 471 CHAPTER 10: EXPECTED VALUE OF MULTIPLE RANDOM VARIABLES, COVARIANCE, AND CORRELATION ................................. 482 10.1. Introduction ................................................................................................................................................................................................. 482 10.2. The Expected Value of a Function of Multiple Random Variables ................................................................................................. 482 10.3. The Expected Value of The Sum of Random Variables ...................................................................................................................... 487 10.4. Covariance Between Two Random Variables ..................................................................................................................................... 493 10.5. Correlation Coefficient Between Random Variables ......................................................................................................................... 506 10.6. Chapter Problems ........................................................................................................................................................................................ 510 CHAPTER 11: DETERMINING THE PROBABILITY FUNCTION AND EXPECTED VALUE BY CONDITIONING ..................................... 520 11.1. Introduction ................................................................................................................................................................................................. 520 11.2. Determining The Probability Function by Conditioning .................................................................................................................. 521 11.3. Determining The Expected Value by Conditioning ............................................................................................................................523 11.4. The Expected Value and Variance of The Sum of A Random Number of Random Variables ................................................. 529 11.5. Chapter Problems ....................................................................................................................................................................................... 533 REFERENCES ................................................................................................................................................................................................................. 541 III In this chapter, we will introduce some methods to count the number of elements in a discrete and finite set. It will be observed in subsequent chapters that using enumeration theory or combinatorial analysis is one of the primary and fundamental methods in probability computation. However, the reader should note that there are not fixed and specific methods for determining the number of states of a set. The purpose of this chapter is to learn the primary and fundamental principles of enumeration and to achieve the ability to generalize them for problems that have not been observed before. A ll methods of counting rely on the Basic Principle of Counting or the Principle of Multiplication, which is expressed as follows: Suppose that two trials are to be done. If the first trial can obtain one out of the 𝒏 possible results and each of those results correspond with the 𝒎 possible results of the second trial, then altogether there are 𝒏×𝒎 possible results for performing the two trials. 1 | P ag e