ebook img

Principles of Mathematical Modeling, Second Edition PDF

322 Pages·2004·2.73 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles of Mathematical Modeling, Second Edition

ELSEVIER (AOf �II I'JT�' sdfsdf PRINCIPLESO F MATHEMATICAL MODELING SeconEdd ition CliLv.De y m HarveMyu ddC ollege ClaremoCnatl,if ornia Amsterdam • Boston • Heidelbe•rg London • New York• Oxford Paris • SanD iego• S anF rancisc•o S ingapo• reS ydney• Tokyo ELSEVIER ACADEMIC PRESS sdfsdf AcquisiEtdiiotno Bra:r baHroal land ProjeMcatn ageSra:r aHha jduk EditorAisaslis tTaonmtS :i nger M<lrketiMnagn ageLri:n dBae attie CoveDre sigMni:r iaDmy m CompositNieonw:g eInm agiSnygs te(mPs)L tdC.h,e nn<lIin,d ia PrintTehre:M <lple-VBaoiolkM anufacturing Group ElsevAiceard eimcP ress 200W heelReora dB,u rlingMtAo n0,1 803l,J SA 525B StreSeuti,t 1e9 00S,a nD iegCoa,l ifo9rn2i1a0 1-44U9S5A, 84T heobalRdo·asdL ,o ndoWnC IX8 RR,U K § Thibso oki sp rintoenda cid-fpraepee r. Copyrig©h2t0 04E,l sevIinecrA. l rlgi htrse served. PrinciopflM east hematical Mo1dsEetdl iitnigCo,ln i,vL e.D ym andE liz'lIbveetyh Copyri©g1h9t8 0A,c ademPirce sAsl.rl i ghrtess erved. Nop arotft hipsu bliicoanmt ayb er eproduocret dar nsmititnea dn yf oromr b ya nym eans, elercotniocrm echaniicnacll,u dpihnotgo copyr,e cordoirna gn,yi n fomratiosnt oraagned retriseyvsatle wmi,t hopuetr missiinwo rni tifnrgo mt hepu blsiher. Permissimoanybs e s ought difrreocmEt llseyv ieSrc'ise n8<c ]ee chnolRoiggyh ts DepartmeinnOt x ford,U K:p hone(:+ 441)8 658438f3a0x(,:+ 441)8 6585333e3-,m ail: permissions@else\'YiOelrli.I cloaamlys. I.:ouo km.p leytoeu rre queosntl ivnieta h eE lsevier homepag(eh ttp://elsevbiyse erl.eccot"miC)nu,gs tomSeurp poratn"dt hen "ObtainPienrgm issions." LibraorfCy o ngreCsast aloging-ill-PDuabtlai cation APPLICATISOUNB MITfED BritiLsihb raCrayt aloguiinPn ugb licaDtaitoan A catalorgeuwer fdo trh ibso oki sa vailafbrloemt heB ritiLsihb rary ISBN0:- 12-226551-3 Fora liln formatoinao lnAl c ademPirce spsu blicatviiosoniustr W ebs itaet www.acadclllicpressbooks.com Printientd h eV niteSdt atoefAs m erica 04 05 060 7 08 8 76 5 4 3 2 sdfsdf sdfsdf "���� � 'UU U U iUU J j UlJfJlI(� :U=tJ=]: - nnnn[c= .OOOn( ­ in ·n} ,l :'fUUl l(Ulc:l ::lU::'. l:: ::lM::l:[ J Contents Preface xiii .................................................................... . Acknowledgments . . xvii ................................................... . PARTA :F oundations . 1 ............................................... CHAPTER1 WhatI sM athematicMaold eling?. 3 ........ 11. Why Do We Do MathematicMaold eling? . 4 ................. 11.1. MathemaitcaMlo delinagn dt heS cientific Method ......................................4. ........... ., 11.2. MathematicMaold elign andt heP ractiocfe Engineering . . . . . 5 ............... .. ......................... 12. Princliepso fM athematicMaold eling 6 ........................ 13. Some Methodosf M athematicMaold eling . 8 ............... 13..1 DimensionHaolm ogeneiatnyd C onsistency 9 ...... 13..2 AbstractainodnS calin.g. . . . .. . 9 .. ... .. ..... ........... 13..3 ConservatainodnB alancPer inciples 1 0 .............. 13..4 ConstructLiinnge aMro dels . . . 11 ....................... 14. Summary . . . . . . 11 ........... ............................ ............ 15. Reference.s . . . 12 ................................................... vii viii Contents CHAPTER2 DimensionAanla lysi.s ... ..13 . ............. ... . . 2.1 Dimensioannsd U nits. ....................1.4. .................. 2.2 DimensionHaolm ogeneity. . . . 15 ... ............................ 2.3 Why Do We Do DimensionAanla lysis? .. 16 .................. 2.4 How Do We Do DimensionAanla lysis? . 19 ................... 2.4.1T heB asiMce thodo fD imensionAanla lys.i.s. 2.0. . 2.4.2T heB uckinghaPmiT heoremf or DimensionAanla lysi.s. . . . . 24 . .. . ....................... 2.5 SystemosfUnits . . . .. .. . 28 ................. .... ................... 2.6 Summary 30 ......................................................... 2.7 Reference.s . . . ... .. . . 31 ... ... ................ ...................... 2.8 Problem.s. . . . . . . .. 31 . .................... ................. .. .. . .... CHAPTER3 Scale .... ..... . .. ..3 3 .... .. ........ . ................... .. 3.1 AbstractainodnS cale . . . . 33 ............ .......................... 3.2 Sizea ndS hapeG:e ometric Sc.alin.g . . 35 ............ ......... 3.2.1G eometriScc alinagn dF ligMhuts cle FractioinnBs i rds . .. 36 .................................... 3.2.2L inearaintdyG eometriScc aling . 37 ................... 3.2.3" Log-logP"l otosf G eometriScc alinDga ta 38 ....... 3.3 Sizea ndF unctionB-iIr:d s and Fl.i..g.ht . .4 4 .. . .............. 3.3.1 TheP owerN eedefdo rH overi.n.g. .......4.5. ........ 3.3.2T heP owerA vailabfolreH overi.n.g.. ......4.6. ...... 3.3.3S oT hereI sa HoverinLgi mit..... .........4.7. ......... 3.4 Sizea ndF unctionH-eIaIr:i nagn dS peech. ........4.7. ..... 3.4.1H earinDge pendosn Siz.e. . . . 48 ............... ......... 3.4.2S peechD ependosn Si.ze .... 50 ..... ................... 3.5 Sizea ndL imitSsc:a lien E quations 51 ......................... 3.51. When a ModeIlsN o LongeArp plicable . 52 .......... 3.5.2S calinignE quation.s. .. . .. . 52 ... . ........ ............... 3.5.3C haracteriTismteisc. .........................5..4. ...... 3.6 ConsequencoefsC hoosinag S cale. ... .... 55 . .. . .... ......... 3.6.1S calinagn d DaAtcaq uisition. .. . 55 ........ . ........... 3.6.2S calinagn dt heD esigonf E xperimen.ts 59 .......... 3.6.3 Scalinagn dP erceptioofnP sr esentDeadt a 62 ....... 3.7 Summary . . . .. .. 65 ............................ ...... ................ 3.8 References .. .. . . 66 .............. . .................................. 3.9 Problems . . . 67 ........................... ........................... CHAPTER4 ApproximatainndgV aliadting Models ... . . 71 .......................................... 4.1 TaylorF'osr mul.a . .. . .. . . 71 ............. ......... ................. Contents ix 4..11 TaylorF'osr mulaan dS eries . . 72 ..................... .. 4..12 TayloSre rieosfT rigonometarnidc HyperbolFiucn ctions .. . . ..7 4 ...... ...................... 4..13 BinomiaElx pansio.ns. . . . 78 ..... ........................ 4.2 AlgebraAipcp roximatio.ns . . . ... ..82 .. ...... ... .. ....... .. .... . 4.3 NumericAaplp roximatiSoingsn:i ficFaingtu re.s .. 84 . .. . .. 4.4 ValidattihnegM odel-HIo:w Do We Know theM odelI sO K? . .. . 88 . ........... .......... ..................... 4.4.1C heckinDgi mensioannsd Units . .8 9 .................. 4.4.2C heckinQgu alitatainvdeL imit Beha.vior. 91 ....... . 4.5 ValidattihnegM odel-IHIo:w LargAer et heE rrors? 92 ..... 4.5.1E rror 93 ....................................................... 4.5.2A ccuracayn dP recision. . . . 94 .... ....... .............. .. 4.6 Fitting CutroDv aetsa . . . . 96 ........ .............................. 4.7 ElementaSrtya tis.t.i...c..s. ...................................9 9 4.7.1M ean,M ediana,n dS tandarDde viation . 100 ........ 4.7.2H istogram.s . . .1 02 . ... .................................... 4.8 Summary ... . .. . .. .. . . 106 ... . ........... . .... ........ ............ .. 4.9 AppendiExl:e mentaTrrya nscendenFtuanlc tions. 1 07 .... 4.10R eferences. . . . .. .. 110 ....... .. .............. ...................... 4.11P roblems. ... . . . .1 11 ... . . .. ........... ............................. PARTB :A pplicatio.ns. .. . . ... .1 15 .. ...... . . ................ . ....... CHAPTER5 ExponentGiraolw tha ndD ecay 1 17 ........ 5.1 How Do ThingGse tS o Outo fH and?. .. . .117 . . . ............ . 5.2 ExponentFiuanlc tioannsd T heiDri fferential Equations .. . . .. . .. .122 ..... ...................... ........... ....... 5.2.1C alclua tianngd D isplayiEnxgp onential Functio.n.s . . 122 . . ........................... .............. 5.2.2T heF irst-OrDdieffre rentEiqaualt ion dNI d t- AN 0 ............................1..2 .6. ...... = 5.3 RadioactDievcea y. . . . 127 ........................................ 5.4 Charginagn dD ischargian Cga pacito..r..". ............ 130 5.4.1A CapacitDoirs charges. .. .. . 131 ..... . ........... .. .... 5.4.2A CapacitIosCr h arged . 133 ............................. 5.5 ExponentMioadle lsi nM oneyM atters .1 36 .................. 5.5.1C om poundI ntere.s.t . . .. .. 136 . .............. ..... ...... 5.5.2I nflat.io.n . .. .. . . . . 138 ............... . .. ...... .............. 5.6 A NonlineMaord elo fP opulatiGorno wth. . 141 .. .. ......... 5.7 A CoupleMdo delo fF ightiAnrgm ies. . ..1 44 . ................ 5.8 Summar.y .. .. .. . . . ...1 47 . ................ ..... ... .... .... ........ .

Description:
Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Princi
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.