ebook img

Principles Of Applied Mathematics: Transformation and Approximation PDF

624 Pages·2000·31.822 MB·\624
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles Of Applied Mathematics: Transformation and Approximation

Principles of Applied Mathematics To Kristine, Sammy, and Justin, Still my best friends after all these years. P rinciples of A pplied M athematics Transformation and Approximation Revised Edition James P. Keener University of Utah Salt Lake City, Utah A dvanced Book Program CRC Press Taylor &.Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business A CHAPMAN & HALL BOOK First published 2000 by Westview Press Published 2018 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 CRC Press is an imprint of the Taylor & Francis Group, an informa business Copyright © 2000 by James P. Keener No claim to original U.S. Government works This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Library of Congress Catalog Card Number: 99-067545 ISBN 13: 978-0-7382-0129-0 (hbk) C ontents Preface to First Edition xi Preface to Second Edition xvii 1 Finite Dimensional Vector Spaces 1 1.1 Linear Vector Spaces....................................................................... 1 1.2 Spectral Theory for Matrices........................................................ 9 1.3 Geometrical Significance of Eigenvalues ....................................... 17 1.4 Fredholm Alternative Theorem..................................................... 24 1.5 Least Squares Solutions-Pseudo Inverses....................................... 25 1.5.1 The Problem of Procrustes................................................ 41 1.6 Applications of Eigenvalues and Eigenfunctions............................ 42 1.6.1 Exponentiation of Matrices ................................................ 42 1.6.2 The Power Method and Positive Matrices........................ 43 1.6.3 Iteration Methods.............................................................. 45 Further Reading...................................................................................... 47 Problems for Chapter 1 .......................................................................... 49 2 Function Spaces 59 2.1 Complete Vector Spaces................................................................. 59 2.1.1 Sobolev Spaces.................................................................... 65 2.2 Approximation in Hilbert Spaces................................................. 67 2.2.1 Fourier Series and Completeness....................................... 67 2.2.2 Orthogonal Polynomials..................................................... 69 2.2.3 Trigonometric Series........................................................... 73 2.2.4 Discrete Fourier Transforms................................................ 76 2.2.5 Sine Functions.................................................................... 78 2.2.6 Wavelets................................................................................ 79 2.2.7 Finite Elements.................................................................... 88 Further Reading.................................................................'................... 92 Problems for Chapter 2 .......................................................................... 93 v Integral Equations 3.1 Introduction......................................................... 101 3.2 Bounded Linear Operators in Hilbert Space . . 105 3.3 Compact Operators .......................................... 111 3.4 Spectral Theory for Compact Operators . . . . 114 3.5 Resolvent and Pseudo-Resolvent Kernels . . . . 118 3.6 Approximate Solutions....................................... 121 3.7 Singular Integral Equations.............................. 125 Further Reading......................................................... 127 Problems for Chapter 3 ............................................. 128 Differential Operators 133 4.1 Distributions and the Delta Function............... 133 4.2 Green’s Functions ............................................. 144 4.3 Differential Operators....................................... 151 4.3.1 Domain of an Operator........................ 151 4.3.2 Adjoint of an Operator ........................ 152 4.3.3 Inhomogeneous Boundary Data............ 154 4.3.4 The Fredholm Alternative..................... 155 4.4 Least Squares Solutions.................................... 157 4.5 Eigenfunction Expansions................................. 161 4.5.1 Trigonometric Functions........................ 164 4.5.2 Orthogonal Polynomials........................ 167 4.5.3 Special Functions.................................... 169 4.5.4 Discretized Operators........................... 169 Further Reading......................................................... 171 Problems for Chapter 4 ............................................. 171 Calculus of Variations 177 5.1 The Euler-Lagrange Equations........................ 177 5.1.1 Constrained Problems........................... 180 5.1.2 Several Unknown Functions.................. 181 5.1.3 Higher Order Derivatives ..................... 184 5.1.4 Variable Endpoints................................. 184 5.1.5 Several Independent Variables............... 185 5.2 Hamilton’s Principle.......................................... 186 5.2.1 The Swinging Pendulum........................ 188 5.2.2 The Vibrating String.............................. 189 5.2.3 The Vibrating Rod................................. 189 5.2.4 Nonlinear Deformations of a Thin Beam 193 5.2.5 A Vibrating Membrane........................ 194 5.3 Approximate Methods....................................... 195 5.4 Eigenvalue Problems.......................................... 198 5.4.1 Optimal Design of Structures............... 201 Further Reading......................................................... 202 Problems for Chapter 5 ............................................. 203 CONTENTS vii 6 Complex Variable Theory 209 6.1 Complex Valued Functions ..............................................................209 6.2 The Calculus of Complex Functions ...............................................214 6.2.1 Differentiation-Analytic Functions......................................214 6.2.2 Integration.............................................................................217 6.2.3 Cauchy Integral Formula .....................................................220 6.2.4 Taylor and Laurent Series.....................................................224 6.3 Fluid Flow and Conformal Mappings...............................................228 6.3.1 Laplace’s Equation.................................................................228 6.3.2 Conformal Mappings..............................................................236 6.3.3 Free Boundary Problems .....................................................243 6.4 Contour Integration ..........................................................................248 6.5 Special Functions................................................................................259 6.5.1 The Gamma Function...........................................................259 6.5.2 Bessel Functions....................................................................262 6.5.3 Legendre Functions.................................................................268 6.5.4 Sine Functions.......................................................................270 Further Reading.........................................................................................273 Problems for Chapter 6 ...................................................................... . 274 7 Transform and Spectral Theory 283 7.1 Spectrum of an Operator .................................................................283 7.2 Fourier Transforms.............................................................................284 7.2.1 Transform Pairs ....................................................................284 7.2.2 Completeness of Hermite and Laguerre Polynomials . . . 297 7.2.3 Sine Functions.......................................................................299 7.2.4 Windowed Fourier Transforms ............................................300 7.2.5 Wavelets...................................................................................301 7.3 Related Integral Transforms..............................................................307 7.3.1 Laplace Transform.................................................................307 7.3.2 Mellin Transform....................................................................308 7.3.3 Hankel Transform ........................................................ 309 7.4 Z Transforms......................................................................................310 7.5 Scattering Theory .............................................................................312 7.5.1 Scattering Examples..............................................................318 7.5.2 Spectral Representations........................................................325 Further Reading.........................................................................................327 Problems for Chapter 7 .............................................................................328 Appendix: Fourier Transform Pairs...........................................................335 8 Partial Differential Equations 337 8.1 Poisson’s Equation.............................................................................339 8.1.1 Fundamental Solutions...........................................................339 8.1.2 The Method of Images...........................................................343 8.1.3 Transform Methods ..............................................................344 8.1.4 Hilbert Transforms.................................................................355 viii CONTENTS 8.1.5 Boundary Integral Equations................................................357 8.1.6 Eigenfunctions.......................................................................359 8.2 The Wave Equation ..........................................................................365 8.2.1 Derivations.............................................................................365 8.2.2 Fundamental Solutions...........................................................368 8.2.3 Vibrations................................................................................373 8.2.4 Diffraction Patterns..............................................................376 8.3 The Heat Equation.............................................................................380 8.3.1 Derivations.............................................................................380 8.3.2 Fundamental Solutions...........................................................383 8.3.3 Transform Methods ..............................................................385 8.4 Differential-Difference Equations.....................................................390 8.4.1 Transform Methods ..............................................................392 8.4.2 Numerical Methods ..............................................................395 Further Reading.........................................................................................400 Problems for Chapter 8 .............................................................................402 9 Inverse Scattering Transform 411 9.1 Inverse Scattering .............................................................................411 9.2 Isospectral Flows................................................................................417 9.3 Korteweg-deVries Equation..............................................................421 9.4 The Toda Lattice................................................................................426 Further Reading.........................................................................................432 Problems for Chapter 9 .............................................................................433 10 Asymptotic Expansions 437 10.1 Definitions and Properties ..............................................................437 10.2 Integration by Parts..........................................................................440 10.3 Laplace’s Method................................................................................442 10.4 Method of Steepest Descents ...........................................................449 10.5 Method of Stationary Phase..............................................................456 Further Reading.........................................................................................463 Problems for Chapter 10.............................................................................463 11 Regular Perturbation Theory 469 11.1 The Implicit Function Theorem .....................................................469 11.2 Perturbation of Eigenvalues..............................................................475 11.3 Nonlinear Eigenvalue Problems........................................................478 11.3.1 Lyapunov-Schmidt Method..................................................482 11.4 Oscillations and Periodic Solutions...................................................482 11.4.1 Advance of the Perihelion of Mercury .................................483 11.4.2 Van der Pol Oscillator............................................................485 11.4.3 Knotted Vortex Filaments......................................................488 11.4.4 The Melnikov Function ........................................................493 11.5 Hopf Bifurcations................................................................................494 Further Reading.........................................................................................496 CONTENTS IX Problems for Chapter 11.............................................................................498 12 Singular Perturbation Theory 505 12.1 Initial Value Problems I ....................................................................505 12.1.1 Van der Pol Equation...........................................................508 12.1.2 Adiabatic Invariance..............................................................510 12.1.3 Averaging........................................., ................................511 12.1.4 Homogenization Theory........................................................514 12.2 Initial Value Problems II....................................................................520 12.2.1 Operational Amplifiers...........................................................521 12.2.2 Enzyme Kinetics....................................................................523 12.2.3 Slow Selection in Population Genetics................................526 12.3 Boundary Value Problems.................................................................528 12.3.1 Matched Asymptotic Expansions.........................................528 12.3.2 Flame Fronts..........................................................................539 12.3.3 Relaxation Dynamics ...........................................................542 12.3.4 Exponentially Slow Motion..................................................548 Further Reading........................................................................................551 Problems for Chapter 12.............................................................................552 Bibliography 559 Selected Hints and Solutions 567 Index 596

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.