ebook img

Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics PDF

447 Pages·2003·8.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics

P O RIME BSESSION P O RIME BSESSION Bernhard Riemann and the Greatest Unsolved Problem in Mathematics John Derbyshire Joseph Henry Press Washington, D.C. Joseph Henry Press • 500 Fifth Street, NW • Washington, DC 20001 The Joseph Henry Press, an imprint of the National Academies Press, was created with the goal of making books on science, technology, and health more widely available to professionals and the public. Joseph Henry was one of the early founders of the National Academy of Sciences and a leader in early American science. Any opinions, findings, conclusions, or recommendations expressed in this volume are those of the author and do not necessarily reflect the views of the National Academy of Sciences or its affiliated institutions. Library of Congress Cataloging-in-Publication Data Derbyshire, John. Prime obsession : Bernhard Riemann and the greatest unsolved problem in mathematics / John Derbyshire. p. cm. Includes index. ISBN 0-309-08549-7 1. Numbers, Prime. 2. Series. 3. Riemann, Bernhard, 1826-1866. I. Title. QA246.D47 2003 512'.72—dc21 2002156310 Copyright 2003 by John Derbyshire. All rights reserved. Printed in the United States of America. For Rosie CONTENTS Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix Part I The Prime Number Theorem 1 Card Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 The Soil, the Crop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 The Prime Number Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 On the Shoulders of Giants . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Riemann’s Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 The Great Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7 The Golden Key, and an Improved Prime Number Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8 Not Altogether Unworthy . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9 Domain Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10 A Proof and a Turning Point . . . . . . . . . . . . . . . . . . . . . . . . . 151 vii viii PRIME OBSESSION Part II The Riemann Hypothesis 11 Nine Zulu Queens Ruled China . . . . . . . . . . . . . . . . . . . . . . 169 12 Hilbert’s Eighth Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 13 The Argument Ant and the Value Ant . . . . . . . . . . . . . . . . . 201 14 In the Grip of an Obsession . . . . . . . . . . . . . . . . . . . . . . . . . . 223 15 Big Oh and Möbius Mu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 16 Climbing the Critical Line . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 17 A Little Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18 Number Theory Meets Quantum Mechanics . . . . . . . . . . . 280 19 Turning the Golden Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 20 The Riemann Operator and Other Approaches . . . . . . . . . . 312 21 The Error Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 22 Either It’s True, or Else It Isn’t . . . . . . . . . . . . . . . . . . . . . . . . 350 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Appendix: The Riemann Hypothesis in Song . . . . . . . . . . . . . . . 393 Picture Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 PROLOGUE I n August 1859, Bernhard Riemann was made a corresponding member of the Berlin Academy, a great honor for a young mathematician (he was 32). As was customary on such occasions, Riemann presented a paper to the Academy giving an account of some research he was engaged in. The title of the paper was: “On the Number of Prime Numbers Less Than a Given Quan- tity.” In it, Riemann investigated a straightforward issue in ordinary arithmetic. To understand the issue, ask: How many prime numbers are there less than 20? The answer is eight: 2, 3, 5, 7, 11, 13, 17, and 19. How many are there less than one thousand? Less than one million? Less than one billion? Is there a general rule or formula for how many that will spare us the trouble of counting them? Riemann tackled the problem with the most sophisticated math- ematics of his time, using tools that even today are taught only in advanced college courses, and inventing for his purposes a math- ematical object of great power and subtlety. One-third of the way into the paper, he made a guess about that object, and then remarked: ix

Description:
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark - a guess, a hypothesis. What he tossed out to the as
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.