ebook img

Pricing Interest-Rate Derivatives: A Fourier-Transform Based Approach PDF

206 Pages·2008·4.686 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pricing Interest-Rate Derivatives: A Fourier-Transform Based Approach

Lecture Notes in Economics and Mathematical Systems 607 FoundingEditors: M.Beckmann H.P.Künzi ManagingEditors: Prof.Dr.G.Fandel FachbereichWirtschaftswissenschaften FernuniversitätHagen Feithstr.140/AVZII,58084Hagen,Germany Prof.Dr.W.Trockel InstitutfürMathematischeWirtschaftsforschung(IMW) UniversitätBielefeld Universitätsstr.25,33615Bielefeld,Germany EditorialBoard: A.Basile,A.Drexl,H.Dawid,K.Inderfurth,W.Kürsten Markus Bouziane Pricing Interest-Rate Derivatives A Fourier-Transform Based Approach 123 Dr.MarkusBouziane LandesbankBaden-Württemberg AmHauptbahnhof2 70173Stuttgart Germany [email protected] ISBN978-3-540-77065-7 e-ISBN978-3-540-77066-4 DOI10.1007/978-3-540-77066-4 LectureNotesinEconomicsandMathematicalSystemsISSN0075-8442 LibraryofCongressControlNumber:2008920679 ©2008 Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial is concerned, specificallythe rights of translation, reprinting, reuseof illustrations, recitation, broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyright LawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtained fromSpringer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Production:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Coverdesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper 987654321 springer.com To Sabine Foreword In a hypothetical conversation between a trader in interest-rate derivatives and a quantitative analyst, Brigo and Mercurio (2001) let the trader answer about the pros and cons of short rate models: ”... we should be careful in thinking marketmodelsarethe finalandcompletesolutiontoallproblemsin interest rate models ... and who knows, maybe short rate models will come back one day...” In his dissertation Dr. Markus Bouziane contributes to this comeback of short rate models. Using Fourier Transform methods he develops a modu- lar framework for the pricing of interest-rate derivatives within the class of exponential-affinejump-diffusions. Basedona technique introducedby Lewis (2001)forequity options,the payoffsandthe stochasticdynamics ofinterest- rate derivatives are transformed separately. This not only simplifies the ap- plicationofthe residuecalculusbut improvesthe efficiency ofnumericaleval- uation schemes considerably. Dr. Bouziane introduces a refined Fractional InverseFastFourierTransformationalgorithmwhichisabletocalculatethou- sands of prices within seconds for a given strike range. The potential of this method is demonstrated for severalone- and two-dimensional models. Asaresulttheapplicationofjump-enhancedshortratemodelsforinterest- ratederivativesisontheagendaagain.Ihope,Dr.Bouziane’smonographwill stimulate further research in this direction. Tu¨bingen, November 2007 Rainer Sch¨obel Acknowledgements This book is based on my Ph.D. thesis titled ”Pricing Interest-Rate Deriva- tives with Fourier Transform Techniques” accepted at the Eberhard Karls University of Tu¨bingen, Germany. Writing the dissertation, I am indebted to many people which contributed academic and personal development. Since any list would be insufficient, I mention only those who bear in my opinion the closest relation to this work. Firstofall,IwouldliketothankmyacademicteacherandsupervisorProf. Dr.-Ing.RainerSch¨obel.He gaveme valuableadvice andsupportthroughout the completion of my thesis. Furthermore, I would also express my grati- tude to Prof. Dr. Joachim Grammig for being the co-referent of this thesis. Further thanks go to my colleagues from the faculty of Economics and Busi- ness Administration, especially Svenja Hager, Robert Frontczak, Wolfgang Kispert, Stefan Rostek and Martin Weiss for fruitful discussions and a pleas- ant working atmosphere. I very much enjoyed my time at the faculty. Finan- cial support from the Stiftung Landesbank Baden-Wu¨rttemberg is gratefully acknowledged. My deepest gratitude goes to my wife Sabine, my parents Ursula and Laredj Bouziane, and Norbert Gutbrod for their enduring support and en- couragement. Tu¨bingen, November 2007 Markus Bouziane Contents List of Abbreviations and Symbols.............................XV List of Tables ..................................................XIX List of Figures.................................................XXI 1 Introduction............................................... 1 1.1 Motivation and Objectives................................ 1 1.2 Structure of the Thesis................................... 4 2 A General Multi-Factor Model of the Term Structure of Interest Rates and the Principles of Characteristic Functions.................................................. 7 2.1 An Extended Jump-Diffusion Term-Structure Model ......... 7 2.2 Technical Preliminaries................................... 11 2.3 The Risk-Neutral Pricing Approach........................ 13 2.3.1 Arbitrage and the Equivalent Martingale Measure ..... 15 2.3.2 Derivation of the Risk-Neutral Coefficients............ 16 2.4 The Characteristic Function .............................. 21 3 Theoretical Prices of European Interest-Rate Derivatives .. 31 3.1 Overview............................................... 31 3.2 Derivatives with Unconditional Payoff Functions............. 32 3.3 Derivatives with Conditional PayoffFunctions............... 38 XII Contents 4 Three Fourier Transform-Based Pricing Approaches ....... 45 4.1 Overview............................................... 45 4.2 Heston Approach........................................ 49 4.3 Carr-MadanApproach ................................... 55 4.4 Lewis Approach ......................................... 60 5 Payoff Transformations and the Pricing of European Interest-Rate Derivatives .................................. 69 5.1 Overview............................................... 69 5.2 Unconditional Payoff Functions ........................... 70 5.2.1 General Results ................................... 70 5.2.2 Pricing Unconditional Interest-Rate Contracts ........ 79 5.3 Conditional PayoffFunctions.............................. 81 5.3.1 General Results ................................... 82 5.3.2 Pricing of Zero-Bond Options and Interest-Rate Caps and Floors........................................ 87 5.3.3 Pricing of Coupon-Bond Options and Yield-Based Swaptions ........................................ 90 6 Numerical Computation of Model Prices .................. 95 6.1 Overview............................................... 95 6.2 Contracts with Unconditional Exercise Rights............... 96 6.3 Contracts with Conditional Exercise Rights................. 97 6.3.1 Calculating Option Prices with the IFFT............. 97 6.3.2 Refinement of the IFFT Pricing Algorithm ...........101 6.3.3 Determination of the Optimal Parameters for the Numerical Scheme.................................103 7 Jump Specifications for Affine Term-Structure Models.....111 7.1 Overview...............................................111 7.2 Exponentially Distributed Jumps..........................115 7.3 Normally Distributed Jumps..............................117 7.4 Gamma Distributed Jumps ...............................120 8 Jump-Enhanced One-Factor Interest-Rate Models .........125 8.1 Overview...............................................125 8.2 The Ornstein-Uhlenbeck Model ...........................126 Contents XIII 8.2.1 Derivation of the Characteristic Function.............126 8.2.2 Numerical Results .................................128 8.3 The Square-Root Model..................................136 8.3.1 Derivation of the Characteristic Function.............136 8.3.2 Numerical Results .................................138 9 Jump-Enhanced Two-Factor Interest-Rate Models.........145 9.1 Overview...............................................145 9.2 The Additive OU-SR Model ..............................146 9.2.1 Derivation of the Characteristic Function.............146 9.2.2 Numerical Results .................................148 9.3 The Fong-Vasicek Model .................................159 9.3.1 Derivation of the Characteristic Function.............159 9.3.2 Numerical Results .................................163 10 Non-Affine Term-Structure Models and Short-Rate Models with Stochastic Jump Intensity ....................171 10.1 Overview...............................................171 10.2 Quadratic Gaussian Models...............................171 10.3 Stochastic Jump Intensity ................................174 11 Conclusion ................................................175 A Derivation of the Complex-Valued Coefficients for the Characteristic Function in the Square-Root Model.........179 B Derivation of the Complex-Valued Coefficients for the Characteristic Function in the Fong-Vasicek Model ........183 References.....................................................187 List of Abbreviations and Symbols δ(x) Dirac delta function Γ(x) Gamma function √ ı imaginary unit, −1 ι diag[I ] M M Fx[...],F−1[...] Fourier Transformation w.r.t. x and inverse Transformationoperator 1A indicator function for the event A C the set of complex-valued numbers E[...],VAR[...] expectation and variance operator P,Q real-worldand equivalent martingale measure R the set of real-valued numbers F information set available up to time t t diag[...] operator returning the diagonal elements of a quadratic matrix FFT[...] Fast Fourier Transformationoperator FRFT[...,ζ] FractionalFourierTransformationoperatorwith parameter ζ IFFT[...] inverse Fast Fourier Transformationoperator Res[...] residue operator Re[z],Im[z] realandimaginarypartofthecomplex-valued variable z RMSE root mean-squared error RMSEa approximate root mean-squared error tr[...] trace operator

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.