ebook img

Price of Anarchy for the N-player Competitive Cascade Game with Submodular Activation Functions PDF

14 Pages·2013·0.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Price of Anarchy for the N-player Competitive Cascade Game with Submodular Activation Functions

Price of Anarchy for the N-player Competitive Cascade Game with Submodular Activation Functions XinranHe(cid:63)andDavidKempe(cid:63)(cid:63) ComputerScienceDepartment,UniversityofSouthernCalifornia, 941BloomWalk,LosAngeles,CA,USA Abstract. We study the Price of Anarchy (PoA) of the competitive cascade game following the frameworkproposedbyGoyalandKearnsin[11].OurmaininsightisthatareductiontoaLinear ThresholdModelinatime-expandedgraphestablishesthesubmodularityofthesocialutilityfunc- tion.Fromthisobservation,wededucethatthegameisavalidutilitygame,whichinturnimplies anupperboundof2onthe(coarse)PoA.Thiscleanerunderstandingofthemodelyieldsasimpler proof of a much more general result than that established by Goyal and Kearns: for the N-player competitivecascadegame,the(coarse)PoAisupper-boundedby2underanygraphstructure.We alsoshowthatthisboundistight. Keywords: Competitivecascadegame,PriceofAnarchy,Submodularity,Validutilitygame,Influ- encemaximization 1 Introduction The processes and dynamics by which information and behaviors spread through social networks have longinterestedscientistswithinmanyareas[18].Understandingsuchprocesseshasthepotentialtoshed lightonhumansocialstructure,andtoimpactthestrategiesusedtopromotebehaviorsorproducts.While theinterestinthesubjectislong-standing,therecentincreasedavailabilityofsocialnetworkandinforma- tiondiffusiondata(throughsitessuchasFacebookandLinkedIn)hasputintoreliefalgorithmicquestions withinthearea,andledtowidespreadinterestinthetopicwithinthecomputersciencecommunity. One particular application that has been receiving interest in enterprises is to use word-of-mouth effects as a tool for viral marketing. Motivated by the marketing goal, mathematical formalizations of influence maximization have been proposed and extensively studied by many researchers [9,14,17,23, 24,8,7,16]. Influence maximization is the problem of selecting a small set of seed nodes in a social network,suchthattheiroverallinfluenceonothernodesinthenetwork—definedaccordingtoparticular modelsofdiffusion—ismaximized. Whenconsideringtheword-of-mouthmarketingapplication,itisnaturaltorealizethatmultiplecom- panies,politicalmovements,orotherorganizationsmayusediffusioninasocialnetworktopromotetheir productssimultaneously.Forexample,SamsungmaytrytopromotetheirnewGalaxyphone,whileAp- pletriestoadvertisetheirnewiPhone.Companieswillnecessarilyendupincompetitionwitheachother, soitbecomesessentialtounderstandtheoutcomeofcompetitivediffusionphenomenainthenetwork. Motivatedbytheabovescenarios,severalmodelsforcompetitivediffusionhavebeenproposedand studied [2,4,7,12,20,11,1,21]. Past work tends to follow one of two assumptions about the timing of players’moves.Thefirstapproachistoassumethatallbutoneofthecompetitorshavealreadychosen their strategies, and to study the algorithmic problem of finding the best response [2,4,7,12,5,6]. The goalmaybemaximizingone’sowninfluence[2,4,7]orminimizingtheinfluenceofthecompetitors[12, (cid:63)SupportedinpartbyNSFGrant0545855. (cid:63)(cid:63)SupportedinpartbyNSFGrant0545855,anONRYoungInvestigatorAward,andaSloanRseearchFellowship. 2 XinranHeandDavidKempe 5].Theotherapproachistomodelthecompetitionasasimultaneousgame,inwhichallcompaniespick theirstrategiesatthesametime[1,11,20,21].Thefinalinfluenceisdeterminedbytheinitialseedsetof everycompanyandtheunderlyingdiffusionprocess. In this paper, we follow the second approach. In the game, the players are companies (or other or- ganizations)whotrytopromotetheircompetingproductsinthesocialnetworkthroughword-of-mouth marketing. The players simultaneously allocate resources to individuals in the social network in order toseedthemasinitialadoptersoftheirproducts.Theseresourcescouldbefreesamples,timespentex- plainingtheadvantagesoftheproduct,ormonetaryrewards.Basedontheallocatedresources,thenodes choose which of the products to adopt initially. Subsequently, the diffusion of the adoption of products proceedsaccordingtothelocaladoptiondynamics.Thegoalforeachplayeristomaximizethecoverage ofhis1ownproduct. The local adoption dynamics play a vital role in determining properties of the game. In this paper, we follow the framework proposed recently by Goyal and Kearns [11]. Their model decomposes the localadoptiondecisionsintotwostages:switchingandselection.Intheswitchingstage,theuserdecides whethertoadoptanyproductorcompanyatall.Thisdecisionisbasedonthesetofneighborswhohave alreadyadoptedoneoftheproducts.Iftheuserdecidestoadoptaproduct,inthefollowingselectionstage, shedecideswhichcompany’sproducttoadoptbasedonthefractionofneighborswhohaveadoptedthe productfromeachcompany. Forexample,assumethatiPhoneandGalaxyaretheonlytwosmartphonesavailable.Intheswitching stage,auserdecideswhethertoadoptasmartphoneornot,basedonthefractionofherneighborswho havealreadyboughtasmartphone.Ifshehasdecidedtoadoptasmartphone,intheselectionstage,she decideswhethertochooseaniPhoneorGalaxybasedonthefractionofiPhoneusersandGalaxyusers among her friends. The two stages are modeled using a switching function f (α +α ), which gives v 1 2 the probability that the user adopts one of the products, and the selection function g (α ,α ), which v 1 2 determinestheprobabilitythattheuserchoosestheproductofaspecificcompany.Hereα andα are 1 2 thefractionsoftheuser’sfriendswhohavealreadyadoptedtheproductfromthetwocompetitors.The detailsofthemodelarepresentedinSection2. Underthisframework,GoyalandKearnshavestudiedthePriceofAnarchy(PoA)ofthetwo-player competitivecascadegame.Informally,thePoAisameasureofthemaximumpotentialinefficiencycre- atedbynon-cooperativeactivity.(TheprecisedefinitionofthePoAisgiveninSection2.3.)Goyal and KearnshaveshownthatthePoAundertheswitching-selectionmodelwithconcaveswitchingfunctions andlinearselectionfunctionsisupper-boundedby4.2 Inthispaper,weshowthatastrongerPoAboundfortheGoyal-Kearnsmodelfollowsfromseveral well-understood and general phenomena. The key observation is that by considering a time-expanded graph, the Goyal-Kearns model can be considered an instance of a general threshold model. Then, the result of Mossel and Roch [17] guarantees that the social utility function is submodular, and a simple coupling argument establishes that players’ utility functions are competitive. With a submodular social utilityfunction,thegameisavalidutilitygame.(ThistypeofproofwasusedpreviouslybyBharathiet al.[2].)Finally,forvalidutilitygames,theresultsofVetta[22]andBlumetal.andRoughgarden[3,19] establisha(coarse)PriceofAnarchyofatmost2. Thankstotheaboveunderstanding,weobtainamuchmoregeneralresultwithamuchsimplerproof. WeshowthatthePoAisupper-boundedby2forthecompetitivecascadegamewithanarbitrarynumber of players and any graph structure with submodular activation functions f (·). We formally state this v resultinTheorem1.Moreover,byutilizingtheresultofRoughgardenin[19],weshowthatourbound notonlyholdsforthePoAunderpureormixedNashequilibriabutalsoforthecoarsePoA.Wealsoshow thattheproposedPoAboundistight. 1Throughoutthepaper,tosimplifythedistinctionofroles,weconsistentlyuse“she”todenoteindividualsinthe socialnetworkand“he”todenotetheplayers,i.e.,thecompanies. 2Infact,theyprovedthatthePoAupperboundholdsinamoregeneralmodel,whichwewilldiscussinSection2. PriceofAnarchyfortheN-playerCompetitiveCascadeGamewithSubmodularActivationFunctions 3 Theorem1. The coarse PoA is upper-bounded by 2 under the switching-selection model with concave switchingfunctionsandlinearselectionfunctions.3 OurresultonthePoAboundholdsunderageneralizedversionoftheframeworkusedin[11].First, and most importantly, our model allows for an arbitrary number of players. Second, we allow multiple playerstotargetthesameindividualandalloweachplayertoputmultipleunitsofbudgetonthesamein- dividual.4Thisgeneralizationenlargesthestrategyspacefromsetstomultisetsandsomewhatcomplicates theanalysisofourmodel.Third,weassociateeachindividualinthenetworkwithaweightmeasuringthe importanceofthenode.Fourth,wegeneralizetheadoptionfunctionsdefinedonthefractionofalready adoptingneighborstoarbitrarysetfunctionsdefinedontheindividualswhohavepreviouslyadoptedthe product. 1.1 RelatedWork Ourworkismainlymotivatedby[11],lyingattheintersectionofinfluenceanalysisinsocialnetworks and traditional game theory research. The model in [11] and the differences compared to our work are discussedindetailaboveandinSection2. Submodularity has been a recurring topic in the study of diffusion phenomena [17,14,12,2,4,5]. [14,17] have shown that influence coverage is submodular under local dynamics with submodularity. The submodularity of global influence coverage can be utilized to design efficient algorithm for either maximizing the influence [14] or minimizing the influence of the competitors [12]. Submodularity has alsobeenappliedintheanalysisofacompetitiveinfluencegamebyBharathietal.[2].Bharathietal.use asimilarapproachaswedointhispaper;theyalsoboundthePoAboundbyshowingthatthegameisa validutilitygame.However,theyanalyzethecompetitivecascadegameunderasimplerdiffusionmodel. Under their model, a node adopts the product from the neighbor who first succeeds in activating her; a continuoustimingcomponentensuresthatthisnodeisuniquewithprobability1. IntheproofforthePoAboundofthecompetitivecascadegame,wearedrawingheavilyonprevious research on the PoA for valid utility games [22,19,3]. Vetta first showed that for a valid utility game, the PoA for pure Nash equilibria is upper-bounded by 2 in [22]. Blum et al. and Roughgarden later generalizedVetta’sresulttothecoarsePoAin[19,3]. Several other game-theoretic approaches have been considered for competitive diffusion in social networks[21,1,20,10,6].[20]mainlyfocusesontheefficientcomputationoftheNashstrategyinstead ofthetheoreticalboundofthePoA. [6]focusesonstudyingthealgorithmicproblemoffindingthebest response. Though [1,21,10] studied the competitive cascade game from a game-theoretic perspective, they mainly focused on the existence of pure Nash equilibria. [1] mainly focuses on the existence of pureNashequilibriaunderadeterministicthresholdmodel.[10]alsotriestocharacterizethestructureof thepureNashequilibriainthegame.ThePoAisstudiedin[21];however,theystudiedthePoAbound ofpureNashequilibriaandusedadeterministicdiffusionmodelinsteadofthestochasticdynamicswe useinourwork.Intheirmodel,thePoAisunboundedasintheGoyal-Kearnsmodelwithnon-concave switchingfunctions.Asnotedby[4,5],smalldifferencesinthediffusionmodelcanleadtodramatically differentbehaviorsofthemodel. 2 ModelsandPreliminaries Inthissection,wedefinebasicnotation,presentthedifferentmodelsofdiffusionandtheN-playergame, andincludeotherdefinitionsofconceptsusedinourproof.Inthegame,theplayersallocateresourcesto 3SimilartotheresultbyGoyalandKearns,ourPoAupperboundextendstoamoregeneralmodel.Wedefinethis moregeneralmodelinSection2,andstateandprovethemoregeneralresultinSection3. 4ThemodelproposedbyGoyalandKearns[11]allowsformultipleunitsofbudgetonthesameindividual,butthe proofdoesnotexplicitlycoverthisextension. 4 XinranHeandDavidKempe thenodesinthegraphG = (V,E)towinthemasinitialadoptersoftheirproducts.Then,theadoption of products propagates according to the local dynamics, described in detail in Section 2.1. The formal definitionofthegameispresentedinSection2.3. Throughout, we use the following conventions for notation. Players are typically denoted by i,j,k, whilenodesareu,v,w.Forsets,functions,etc.,theidentityofaplayerisappliedasasuperscript,while thatofanode(andtimestep)isappliedasasubscript.Vectorsarewritteninboldface,includingvectors ofsets;inparticular,wefrequentlywriteS = (S1,...,SN)forthevectorofsetsofnodesbelongingto thedifferentplayers. 2.1 Generaladoptionmodel Thegeneraladoptionmodelisageneralizationoftheswitching-selectionmodeldescribedinSection1. EachnodeinGisinoneoftheN+1states{0,1,...,N}.Anodevinstatei>0meansthatindividual v has adopted the product of player i, while state 0 means that she has not adopted the product of any player. In this case, we also say that v is inactive. Conversely, we say that node v is activated if she is in one of the states i > 0. Initially, all nodes are inactive. The diffusion of the adoption of products is aprocessdescribedbynodes’statechanges.Weassumethattheprocessisprogressive,meaningthata nodecanchangeherstateatmostonce,from0tosomei>0,andmustremaininthatstatesubsequently. Thediffusionprocessworksintwostages.WecallthefirststageSeedingandthesecondstageDif- fusion.Inthefirststage,theinitialseedsofallplayersaredecidedbasedonthebudgetsthateachplayer allocates to the nodes. The initial seeds are used as starting points for the diffusion stage. In the sec- ond stage, the adoption propagates according to certain local dynamics based on the nodes who have previouslyadoptedtheproducts. Seedingstage: ThestrategyMi ofplayeriisamultisetofnodes.Wedefineαi asthenumberoftimes v thatv appearsinplayeri’smultiset.Foreachnodev ∈ V,if(cid:80)N αi = 0,theinitialstateofnodev is i=1 v 0; otherwise, the initial state of node v is one of {1,2,...,N} with probabilities (α1v,...,αNv ), where Zv Zv Z = (cid:80)N αi is simply the normalizing constant. The decisions for different nodes are independent. v i=1 v Thus, if no player selects a node, the node remains inactive. Otherwise, the players win the node as an initialadopterwithprobabilityproportionaltothenumberoftimestheyselectthenode. Diffusionstage: Theimportantpartofdiffusionisthelocaldynamicsdecidingwhenanodegetsinflu- enced,i.e.,changesherstatefrom0toi.LetSibethesetofnodesinstatei.Anodevwhoisstillinstate 0changesintostate1,...,N,0accordingtotheprobabilities N (cid:88) (h1(S),...,hN(S),1− hi(S)). v v v i=1 We call hi(S1,...,SN) the adoption function of node v for product i. It gives the probability that v astillinactivenodev adoptsproductigiventhatSj isthecurrentsetofnodesinstatej.Theadoption functionsmustsatisfythefollowingtwoconditions: 0≤hi(S)≤1, ∀v ∈V,i=1,...,N v (cid:80)N hi(S)≤1,∀v ∈V. i=1 v We call H (S) = (cid:80)N hi(S) the activation probability; it gives the probability that v adopts any v i=1 v productandchangesfromstate0toanystatei>0. Equipped with the local dynamics of adoption, we still need to define in what order nodes’ states are updated. In the general adoption model, we assume that an update schedule is given in advance to PriceofAnarchyfortheN-playerCompetitiveCascadeGamewithSubmodularActivationFunctions 5 determine the order of updates. The update schedule is a finite sequence Q of nodes (cid:104)v ,...,v (cid:105), of 1 (cid:96) length(cid:96).Anodecouldoccurmultipletimesinthesequence. Nodes’ states are updated according to the order prescribed by the sequence. Let Si be the set of t nodesinstateiafterthefirsttupdates;Si istheseedsetofplayeriresultingfromtheseedingstage.In 0 eachroundt,thestateofnodev isupdatedaccordingtothelocaldynamicsofadoptionandpreviously t activated nodes, namely S = (S1 ,...,SN ). If node v is already in state i > 0, she remains in t−1 t−1 t−1 t statei.Otherwise,shechangesintostate1,...,N,0accordingtotheprobabilities N (cid:88) (h1(S ),...,hN(S ),1− hi(S )). v t−1 v t−1 v t−1 i=1 The states of all other nodes remain the same. The updates in different rounds are independent. The diffusionstageendsafterthe(cid:96)updatesteps.Theprescribedupdatesequencemakesthismodeldifferent fromthepreviouslystudiedIndependentCascadeandThresholdModels.Wediscussthedifferenceand someimplicationsinmoredetailafterdefiningtheThresholdModelinSection2.4. 2.2 Usefulproperties Wenextidentifythreeimportantpropertiesthatmakethemodelmoretractableanalytically:(1)additivity oftheactivationprobabilityH ,(2)competitivenessoftheadoptionfunctionh and(3)submodularity v v oftheactivationfunctionf . v Definition1. The total activation probability H (S) = (cid:80)N h (S) is additive if and only if H can v i=1 v v be written as H (S) = f ((cid:83)N Si) for some monotone set function defined on V. We call f (S) the v v i=1 v activationfunctionforvwhenH isadditive. v Additivity implies that the probability for a node to adopt the product and change from inactive to active only depends on the set of already activated nodes and not on which specific products they have adopted. For example, the probability that one adopts a smartphone only depends on who has already adoptedone,independentofwhoisusingiPhoneandwhoisusingGalaxy. Tosimplifynotation,wedefineS−i =(cid:83) Sk,andS−i =(Sk) . k(cid:54)=i k(cid:54)=i Definition2. Theadoptionfunctionhi(S)forplayeriiscompetitiveifandonlyhi(S)≥hi(Sˆ)when- v v v everSˆi ⊆SiandS−i ⊆Sˆ−i. Competitiveness means that the adoption function for player i is monotone increasing in the set of nodesthathaveadoptedproductiandmonotonedecreasinginthesetofnodesthathaveadoptedsome competitor’sproducts.5 Definition3. Theactivationfunctionf issubmodularifandonlyifforanytwosetS ⊆T ⊆V andany v nodeu∈V, f (S∪{u})−f (S)≥f (T ∪{u})−f (T). v v v v 5 Thisassumptionisreasonablewhenthereputationoftheproductisalreadywell-established.However,whena newproductcomesout,thepresenceofcompetitorsmayhelppopularizetheproduct,byincreasingitsoverall exposureorperceivedimportanceorrelevance.Theseeffectscouldleadtomorepurchasesevenforoneparticular companyi.ThissubtledistinctionisdiscussedmoreinSection2.4. 6 XinranHeandDavidKempe Submodularityofactivationfunctionsimpliesthattheoverallactivationprobabilityhasdiminishing returns.Itintuitivelymeansthatthefirstfriendtobuyandrecommendasmartphonehasmoreinfluence thanafriendwhorecommendsitaftermanyothers. Goyal and Kearns have shown in [11] that the switching-selection model with concave switching functionsandlinearselectionfunctionsisaspecialcaseofthegeneraladoptionmodelwithcompetitive adoptionfunctionsandadditiveactivationprobabilities.Inaddition,duetotheconcavityoftheswitching function f , the activation functions in the general adoption model are also submodular. Therefore, we v havethefollowinglemma: Lemma1. Everyinstanceoftheswitching-selectionmodelwithconcaveswitchingfunctionsandlinear selectionfunctionsisaninstanceofthegeneraladoptionmodelsatisfyingallthreeoftheaboveproper- ties. Lemma1allowsustoproveourPoAboundonlyforthegeneraladoptionmodel;itthenimpliesTheo- rem1. 2.3 Thegame ThecompetitivecascadegameisanN-playergameonagivengraphG = (V,E).Thestructureofthe graph as well as all adoption functions are known to all the players. Each player i is a company. The strategyforeachplayeriisamultisetMi ofnodes;weuseM =(M1,...,MN)todenotethestrategy vectorforallplayersandαi forthenumberoftimesthatnodevappearsinMi. v Players’strategiesareconstrainedbytheirbudgetsBi,inthattheymustsatisfy|Mi|≤Bi.Wefurther allownode-specificconstraintsrequiringthatαi ≤Ki forgivennode-specificbudgetsKi ≤Bi.These v v v may constrain players from investing a lot of resources into particularly hard-to-reach nodes; however, thenode-specificconstraintsmostlyservetosimplifynotationinsomelaterproofs.Wesaythatastrategy Miisfeasibleifalloftheaboveconditionsaresatisfied. AllplayerssimultaneouslyallocatetheirbudgetstothenodesofG.Giventhechoicesthattheplayers make,thepayoffsaredeterminedbythegeneraladoptionmodelasthecoverageoftheplayer’sproduct amongtheindividualsinG.Eachnodevinthegraphisassociatedwithaweightω ≥0,measuringthe v importanceofthenode.Thepayofffunctionofplayeriisσi(M) = E[(cid:80) ω ],theexpectedsumof v∈Si v (cid:96) weightsfromnodeshavingadoptedi’sproductafterall(cid:96)updatesteps. Thesocialutilityγ(S )=(cid:80) σi(M)isthesumofweightsfromnodesadoptinganyoftheproducts.6 0 i NoticethatwhentheactivationprobabilitiesH areadditive(Definition1),γ(·)onlydependsonS = v 0 (cid:83)N Si,thesetofnodesactivatedaftertheseedingstage(butnotonwhichcompanytheychose). i=1 0 Tosimplifynotation,wedefine(M−k,M˜k)=(M1,...,Mk−1,M˜k,Mk+1,...,MN),andinpar- ticular(M−k,∅k)=(M1,...,Mk−1,∅,Mk+1,...,MN). WesaythatastrategyprofileM isapureNashequilibriumifnoplayerhasanincentivetochange hisstrategy.Namely,foranyplayeri, σi(M)≥σi(M−i,M˜i) forallfeasibleM˜i. LetOPTbeastrategyprofilemaximizingthesocialutilityfunction,andEQ thesetofallpureNash pure equilibria.ThepriceofanarchyofpureNashequilibriaisdefinedasfollows: γ(OPT) PurePriceofAnarchy= max . M∈EQ γ(M) pure 6Thisdefinitionimplicitlyassumesthattheproductcarriesavalueforthosewhoadoptit;thus,societyisbetteroff whenmorepeopleadoptatleastoneproduct. PriceofAnarchyfortheN-playerCompetitiveCascadeGamewithSubmodularActivationFunctions 7 However,thecompetitivecascadegamecouldhavenopureNashequilibrium[21].Thus,weextendour analysis to more general equilibrium concepts. A coarse (correlated) equilibrium of a game is a joint probabilitydistributionPwiththefollowingproperty[19]:ifM isarandomvariablewithdistribution P,thenforeachplayeri,andallfeasibleMˆi: E [σi(M)]≥E [σi(M−i,Mˆi)]. M∼P M−i∼P−i SimilartothePoAforpureNashequilibria,thecoarsepriceofanarchyisdefinedas γ(OPT) CoarsePriceofAnarchy= max , P∈EQcoarse EM∼Pγ(M) whereEQ isthesetofallcoarseequilibria. coarse 2.4 TheThresholdModel Ouranalysiswillbebasedonacarefulreductionofthegeneraladoptionmodeltothegeneralthreshold modeldefinedin[14,15].Inthegeneralthresholdmodel(withN =1),everynodevinthenetworkhas anassociatedactivationfunctionfˆ(·).Atthebeginningoftheprocess,eachnodedrawsathresholdθ v v independentlyanduniformlyfrom[0,1].StartingfromaninitiallyactivesetS ,anodebecomesactive 0 attimet(i.e.,isamemberofS )ifandonlyiffˆ(S )≥θ .Theprocessendswhenforoneround,no t v t−1 v newnodehasbecomeactive(whichisguaranteedtohappeninatmost|V|steps).Iftisthetimewhen thishappens,theinfluenceoftheinitialsetS isdefinedasσ (S )=E[(cid:80) ω ].Inabeautifulpiece 0 ω 0 v∈St v ofwork,MosselandRochestablishedthefollowingtheoremaboutthefunctionσ : ω Theorem2 (Mossel-Roch[17]).Iff ismonotoneandsubmodularforeverynodev inthegraph,then v σ ismonotoneandsubmodularunderthegeneralthresholdmodel. ω Given the apparent similarity between the general adoption model and the general threshold model (say,forN = 1),itisilluminatingtoconsiderthewaysinwhichthemodelsdiffer,andtheimplications forthecompetitivecascadegame.Inthegeneraladoptionmodel,asequenceofnodestoupdateisgiven, andnodesonlyconsiderchangingtheirstatewhentheyappearinthesequence.Bycontrast,inthegeneral thresholdmodel,nodesconsiderchangingtheirstateineachround. Soatfirst,itappearsasthoughasequencerepeating|V|timesapermutationofall|V|nodeswould allow a reduction from the threshold model to the adoption model. However, note that in the adoption model, each node makes an independent random choice whether to change her state in each round, whereasinthethresholdmodel,therandomchoicesarecoupledviathethresholdθ ,whichstaysconstant v throughout the process. In particular, if f (S ) > 0, then a node appearing often enough in the update v 0 sequencewilleventuallybeactivatedwithprobabilityconvergingto1,whereasthisneednotbethecase inthegeneralthresholdmodel. The increase in activation probability caused by multiple occurrences in the update sequence has powerful implications for the competitive game. It allows us to establish rather straightforwardly the competitiveness(Definition2)ofeachplayer’sobjectivefunction,andthesubmodularity(Definition3) ofthesocialutility.Bycontrast,Borodinetal.[4]showthatbothpropertiesfailtoholdformostnatural definitionsofcompetitivethresholdgames.Attheheartofthecounter-examplesin[4]liesthefollowing kindofdynamic:Attime1,anodeurecommendstov theuseofaGalaxyphone,butfailstoconvince v.Attime2,anothernodew recommendstov theuseofaniPhone.Ifv decidestoadoptasmartphone attime2,mostnaturalversionsofathresholdmodel(aswellasunderthegeneraladoptionmodel)allow for an adoption of a Galaxy phone as well. This “extra chance” results in synergistic effects between competitors, and thus breaks competitiveness. Under the model of [11], this problem is side-stepped. v will only consider adopting a smartphone in step 2 when she appears in the sequence at time 2; in that case,adoptionofaGalaxyphoneinstep2willbeconsideredindependentlyofwhetherw hasadopted aniPhone.ThisobservationfleshesoutthediscussionalludedtoinFootnote5. 8 XinranHeandDavidKempe 2.5 Validutilitygames A valid utility game [22] is defined on a ground set V with social utility function γ defined on subsets ofV.ThestrategiesofthegamearesetsSi ⊆ V (itispossiblethatnotallsetsareallowedasstrategies 0 for some or all players), and the payoff functions are σi for each player i. The social utility is defined ontheunionofallplayers’sets,γ((cid:83)N Si).Thedefinitionrequiresthatthreeconditionshold:(1)The i=1 0 social utility function γ(·) is submodular; (2) For each player i, σi(S ) ≥ γ(S ) − γ(S−i,∅i); (3) 0 0 0 (cid:80)N σi(S )≤γ(S ). i=1 0 0 3 UpperBoundontheCoarsePriceofAnarchy Inthissection,wepresentourmainresult:theupperboundonthecoarsePoAwithsubmodularactivation functions.WeprovetheupperboundonthePoAbyshowingthatthecompetitivecascadegameisavalid utility game. We note, however, that the strategy space of our competitive cascade game consists of multisets,whereasthestandarddefinitionofutilitygameshasonlysetsasstrategies.Inordertodealwith thissubtletechnicalissue,weusethefollowinglemma,whoseproofisgivenintheappendix. Lemma2. LetG =(G,{hi},{Ki},{Bi},{ω },Q)beanarbitraryinstanceofthecompetitivecascade v v v game.Then,thereexistsaninstanceGˆ= (Gˆ,{hˆi},{Kˆi},{Bˆi},{ωˆ },Qˆ)withthesamesetofplayers, v vˆ v andthefollowingproperties: 1. (cid:80)N Kˆi ≤ 1forallv ∈ Vˆ.(Atmostoneplayerisallowedtotargetanode,andwithatmostone i=1 vˆ resource.) 2. Foreveryplayeri,therearemappingsµi,µˆimappingi’sstrategiesinGtohisstrategiesinGˆandvice versa,respectively,satisfyingthefollowingproperty:Ifforalli,eitherµi(Mi) = Mˆi orµˆi(Mˆi) = Mi,thenforalli,σi(M)=σˆi(Mˆ). In particular, Lemma 2 implies that the social utility is also preserved between the two games, and strategies Mi are best responses to Mj,j (cid:54)= i if and only if the Mˆi are best response to Mˆj,j (cid:54)= i. (Otherwise,aplayercouldimprovehispayoffintheothergamebyswitchingtoµi(Mi)orµˆi(Mˆi).)In this sense, Lemma 2 establishes that for every competitive cascade game instance, there is an “equiva- lent”instanceinwhicheachnodecanbetargetedbyatmostoneplayer,andwithatmostoneresource. Therefore, we will henceforth assume without loss of generality that the strategy space for each player consistsonlyofsets. Infittingthecompetitivecascadegameintothevalidutilitygameframework,thegroundsetofthe game is V, and the payoff function of player i is σi(S) = E[(cid:80) ω ]: the sum of weights from the v∈Si v (cid:96) nodesv ∈V instateiattheendoftheupdatingsequence.Becauseofadditivity,thesocialutilityfunction dependsonlyonS .Thatis,thefollowingiswell-defined:γ(S )=γ(S )=(cid:80) σi(S ).Therefore,the 0 0 0 i 0 thirdconditionofavalidutilitygame(sumboundedness)issatisfiedtrivially.Below,wewillprovethe followingtwolemmas: Lemma3. Assumethatforeverynodev,thetotalactivationprobabilityH (S)isadditive,andtheacti- v vationfunctionf (S)issubmodular.Then,thesocialutilityfunctionγ(S )issubmodularandmonotone. v 0 Lemma4. Ifforeverynodevandeverplayerk,H (·)isadditiveandhk(·)iscompetitive,thenforeach v v playeri,wehaveσi(S )≥γ(S )−γ(S−i,∅i). 0 0 0 Lemmas3and4togetherestablishthatthecompetitivecascadegameisavalidutilitygame.Example 1.4in[19]showsthatthecoarsePoAofvalidutilitygamesisatmost2(Vetta[22]establishesthesame forthePoA),provingthefollowingmainresultofourpaper: PriceofAnarchyfortheN-playerCompetitiveCascadeGamewithSubmodularActivationFunctions 9 Theorem3. Assumethatthefollowingconditionshold: 1. Foreverynodev,thetotalactivationprobabilityH (S)isadditive. v 2. Foreverynodev,theactivationfunctionf (S)issubmodular. v 3. Foreveryplayeriandnodevinthegraph,theadoptionfunctionhi(S)iscompetitive. v Then,theupperboundonthePoA(andcoarsePoA)is2inthecompetitivecascadegame. By Lemma 1, the switching-selection model with concave switching functions and linear selection functions is a special case of the general adoption model with competitive adoption functions, additive activationprobabilitiesandsubmodularactivationfunctions.Therefore,Theorem1followsnaturallyasa corollaryofTheorem3. ProofofLemma3. Webuildaninstanceofthegeneralthresholdmodelwhoseinfluencecoveragefunc- tion σ (S ) is exactly the same as γ(S ). The idea is that for additive functions, the social utility does ω 0 0 not depend on which node chooses which company, so the game is reduced to the case of just a single influence.Theupdatesequencecanbeemulatedwithatime-expandedlayeredgraph. Thetime-expandedgraphG isdefinedasfollows.7 Foreachnodev oftheoriginalgraph,wehave (cid:96) (cid:96)+1nodesvˆ ,vˆ ,...,vˆ inG .WeuseL = {vˆ | v ∈ V}todenotethesetofnodesinlayert.The 0 1 (cid:96) (cid:96) t t activationfunctionsaredefinedasfollows: 1. Inlayer0,fˆ ≡0foreverynodev ∈V. vˆ0 2. In layer t, 1 ≤ t ≤ (cid:96), consider a node v with switching function f . If v is the tth element of the v updatingsequence(v =v ),weset t (cid:40) 1 ifvˆ ∈S fˆ (S)= t−1 vˆt f ({u|uˆ ∈S}) otherwise; v t−1 otherwiseweset (cid:40) 1 ifvˆ ∈S fˆ (S)= t−1 vˆt 0 otherwise. Finally,thetotalinfluenceisdefinedasσ (S )=E[(cid:80) ω ],whereSˆisthesetofnodesactivated ω 0 vˆ(cid:96)∈Sˆ v inthethresholdmodeloncenomoreactivationsoccur.Intheinstance,eachlayerL emulatesoneupdate t intheoriginalupdatesequenceofthegeneraladoptionmodel. For each node vˆ in the layered graph, f (S) is submodular and additive. The submodularity and t vˆt monotonicityforthe0-1activationfunctionsaretriviallysatisfied.Forthenodesintheupdatesequence, submodularityholdsbecauseweassumedthef (S)tobesubmodular,andmonotonicityfollowsbecause v theH (S)areadditive. v Next,weshowthatγ(S )=σ (S ),byusingastraightforwardcouplingbetweenthegeneralthresh- 0 ω 0 old model and the general adoption model. According to the construction of G , the state changes for (cid:96) allnodesexceptvˆ (wherev isthetth elementoftheupdatingsequence)aredeterministic.Therefore, t t we only need to draw the thresholds Θ = (cid:104)θ ,θ ,...,θ (cid:105) for the (cid:96) nodes in the update sequence: they 1 2 (cid:96) aredrawnindependentlyanduniformlyfrom[0,1].Inthegeneraladoptionmodel,whenupdatingthetth nodev inthesequence,ifnodev isstillinactive,shebecomesactiveifandonlyiff (S )≥θ .Ifthe t t v t−1 t nodeisalreadyactivated,sheremainsactivatedinthesamestate.Byinductionont,v ∈S ifandonlyif t vˆ ∈ Sˆ∩L .Thus,theoutcomesofthetwoprocessesarethesamepointwiseoverthresholdvectorsΘ: t t γ(S |Θ)=σ (S |Θ).Inparticular,theirexpectationsarethusthesame. 0 ω 0 Finally,Theorem2establishesthemonotonicityandsubmodularityofσ (S ),andthusalsoγ(S ). ω 0 0 7Allactivationinformationisencodedintheactivationfunctions.Therefore,thereisnoneedtoexplicitlyspecify theedgesofG . (cid:96) 10 XinranHeandDavidKempe ProofofLemma4. Webeginbyshowingthatundertheassumptionsofthelemma,σi(S )≤σi(S−k,∅k) 0 0 forallplayersk,i,k (cid:54)= i.Todoso,weexhibitasimplecouplingofthegeneraladoptionprocessesfor thetwoinitialstatesS and(S−k,∅k),essentiallyidenticaltooneusedintheproofofLemma1in[11]. 0 0 Noticethattheactivationfunctionsareadditive;therefore,wecancombineallstatesk (cid:54)=iintoonestate, whichwedenoteby−i. Theactivationprocessisdefinedbythewayinwhichnodesdecidewhethertoupdatetheirstate,and ifso,towhichnewstate.Anequivalentwayofdescribingthechoiceisasfollows:foreachsteptofthe updatesequence,wedrawanindependentuniformlyrandomnumberz ∈[0,1].Instept,assumingthat t nodev isstillinstate0,shechangesherstateto: t – stateiifz ∈[0,hi (S )). – state−iiftz ∈[hivt(St−1),f ((cid:83)N Sj )). t vt t−1 vt j=1 t−1 – state0otherwise. To couple the two random processes with starting conditions (S−k,∅k) and S , we simply choose 0 0 thesamevaluesz forboth.LetXj denotethesetofnodesinstatej,j ∈{i,−i,0}aftertupdateswith t t startingcondition(S−k,∅k).Yj isdefinedanalogously,withstartingconditionS . 0 t 0 Conditionedonanychoiceof(z ,...,z ),asimpleinductionproofusingcompetitivenessofthehi 1 (cid:96) v andmonotonicityofthef showsthatforeachtimet,Xi ⊇ Yi,X0 ⊇ Y0,andthusalsoX−i ⊆ Y−i. v t t t t t t Therefore,attheendoftheupdatesequence,thedesiredinequalityholdspointwiseover(z ,...,z ),and 1 (cid:96) inparticularinexpectation,asclaimed.Finally,havingestablishedthatσi(S )≤σi(S−k,∅k),weuseit 0 0 inthefollowingcalculations: (cid:88) γ(S )−γ(S−i,∅i)= (σk(S )−σk(S−i,∅i)) 0 0 0 0 k (cid:88) =σi(S )+ (σk(S )−σk(S−i,∅i)) 0 0 0 k(cid:54)=i ≤σi(S ). 0 4 TightnessofthePoAUpperBound Wegiveaninstanceofthecompetitivecascadegameinthe(morerestrictive)switching-selectionmodel toshowthatourupperboundof2forthePoAinTheorem3istight. LetN bethenumberofplayers.ThegraphconsistsofastarwithonecenterandN leaves,aswellas N isolatednodes.Eachplayerhasonlyoneunitofbudget,andtheupdatesequenceisanypermutation ofthenodesinthestargraph.Theswitchingfunctionsaretheconstant1forallnodesinthegraph,which impliesthatifanodehasanyneighborwhohasadoptedtheproduct,thenodealsoadoptstheproduct. The selection functions are simply the fraction of neighbors who have adopted the product previously. Under this instance, the unique Nash equilibrium has every player allocating his unit of budget to the center node of the star graph. By placing the budget at the center node, the expected payoff for each playeris N+1,whileplacingitonanyothernodeatmostleadstoapayoffof1.However,thestrategy N that optimizes the social utility is to place one unit of budget at the center node of the star graph while placingallothersattheisolatednodes.Thus,thePoA(andalsoPriceofStability)is 2N .AsN goesto N+1 infinity,thelowerboundonthePoAtendsto2.Therefore,wehaveprovedthefollowingproposition: Proposition1. Theupperboundof2onthePoA(andthusalsocoarsePoA)istightforthecompetitive cascadegameevenforthesimplerswitching-selectionmodel.

Description:
also show that this bound is tight. Keywords: Competitive cascade game, Price of Anarchy, Submodularity, Valid utility game, Influ- ence maximization.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.