ebook img

Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane PDF

166 Pages·2017·4.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane

UUnniivveerrssiittyy ooff TTeennnneesssseeee,, KKnnooxxvviillllee TTRRAACCEE:: TTeennnneesssseeee RReesseeaarrcchh aanndd CCrreeaattiivvee EExxcchhaannggee Masters Theses Graduate School 12-2008 PPrreelliimmiinnaarryy DDeessiiggnn,, FFlliigghhtt SSiimmuullaattiioonn,, aanndd TTaasskk EEvvaalluuaattiioonn ooff aa MMaarrss AAiirrppllaannee Dodi DeAnne Walker University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Walker, Dodi DeAnne, "Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane. " Master's Thesis, University of Tennessee, 2008. https://trace.tennessee.edu/utk_gradthes/496 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Dodi DeAnne Walker entitled "Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems. Stephen Corda, Major Professor We have read this thesis and recommend its acceptance: Borja Martos, U. Peter Solies Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) To the Graduate Council: I am submitting herewith a thesis written by Dodi DeAnn Walker entitled “Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems. Dr. Stephen Corda, Major Professor We have read this thesis and recommend its acceptance: Borja Martos U. Peter Solies Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records) Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Dodi DeAnn Walker December 2008 Abstract A limited aerodynamic, stability and control, and task evaluation of a new rocket-powered Mars airplane design was conducted. The Mars airplane design, designated the Argo VII, was patterned after the NASA ARES-2 design. The aerodynamic and stability and control parameters of the Argo VII were determined using analytical and computational techniques and were comparable to those of the ARES-2. The Argo VII was predicted to be statically stable and damped in all axes on Earth and Mars. A series of flight tests were performed using a MATLAB Simulink-based flight simulation program to assess the performance, longitudinal flying qualities, and mission effectiveness of the Argo VII flying on Earth and Mars. At an assumed Mars mission flight condition of 2 km (6,562 ft) altitude and 0.65 Mach, the Argo VII had a maximum range lift coefficient of 0.44, a maximum lift-to- drag ratio of 15.5, and a maximum endurance lift coefficient of 0.76. The Argo VII was dynamically stable and damped in the longitudinal axis. At the Mars mission flight condition, the long period had a damping ratio of 0.04, damped and undamped natural frequencies of 0.0423 rad/s (2.42 deg/s), and time to half of 409.6 sec. The short period had a damping ratio of 0.2, damped natural frequency of 7.39 rad/s (723 deg/s), undamped natural frequency of 7.54 rad/s (432 deg/s), and time to half of 0.46 sec. At the Mars mission flight condition, the aircraft had a specific excess power of 5.8 m/s (19.02 ft/s). At all Mars altitudes evaluated, the fastest way for the aircraft to change altitudes was to climb to the desired altitude at a constant equivalent airspeed. Mars mission aircraft task evaluations were performed using Mars simulation scenery to validate the predicted aircraft range and climb and descent performance. The aircraft range evaluation resulted in an aircraft maximum range of 373 km (232 mi). The predicted aircraft maximum range was 500 km (311 mi). The climb and descent evaluations resulted in aircraft performance that was similar to the predicted aircraft performance. This research illustrated that the Argo VII Mars aircraft design can provide a viable means of acquiring scientific data on Mars. ii Table of Contents I. Introduction ........................................................................................................................................................... 1 IA. WHY FLY ON MARS? ............................................................................................................................................ 1 IB. CHALLENGES OF FLYING ON MARS ...................................................................................................................... 1 IC. HISTORY OF MARS AIRCRAFT DESIGNS ................................................................................................................ 2 ID. OBJECTIVES OF RESEARCH ................................................................................................................................... 5 II. Mars Airplane Designs .......................................................................................................................................... 6 IIA. NASA AERIAL REGIONAL-SCALE ENVIRONMENTAL SURVEY (ARES) MARS AIRPLANE ................................... 6 IIA.1. Design Requirements and Philosophy ......................................................................................................... 6 IIA.2. Science Platform Selection .......................................................................................................................... 7 IIA.3. Preliminary Powered Airplane Design ........................................................................................................ 7 IIA.4. Design Refinement ....................................................................................................................................... 8 IIA.5. ARES-2 Performance Summary ................................................................................................................... 9 IIB. ARGO VII MARS AIRPLANE DESIGN ................................................................................................................... 9 IIB.1. General Argo VII Description ................................................................................................................... 10 IIB.2. Aircraft Geometry ...................................................................................................................................... 10 IIB.3. Airfoil Analysis .......................................................................................................................................... 11 IIB.4. Aerodynamic Model ................................................................................................................................... 13 IIB.5. Stability and Control Model ...................................................................................................................... 15 IIB.6. Performance Summary .............................................................................................................................. 16 IIC. COMPARISON OF ARGO VII AND ARES-2 ......................................................................................................... 17 IIC.1. Geometry ................................................................................................................................................... 17 IIC.2. Stability and Control ................................................................................................................................. 17 IIC.3. Cruise Performance .................................................................................................................................. 18 III. Theory and Approach .......................................................................................................................................... 19 IIIA. MARTIAN ATMOSPHERIC MODEL .................................................................................................................... 19 IIIA.1. Description ............................................................................................................................................... 19 IIIA.2. Calculation of Martian Atmospheric Properties ...................................................................................... 20 IIIA.3. Discussion of the Mars Atmosphere Model .............................................................................................. 22 IIIB. PITCHING MOMENT THEORY AND PARAMETER MATCHING TECHNIQUE ......................................................... 23 IIIB.1. Description ............................................................................................................................................... 23 IIIB.2. Calculation of Pitch Stability Moment, M ........................................................................................... 24  IIIB.3. Discussion Stability Derivatives, M and M , on Earth and Mars ..................................................... 28  q IV. Flight Test and Simulation ................................................................................................................................... 30 IVA. DESCRIPTION OF RYAN NAVION VARIABLE STABILITY RESEARCH AIRCRAFT (VSRA) .................................. 30 IVB. FLIGHT TEST PLAN .......................................................................................................................................... 31 IVB.1. Flight Test Methods .................................................................................................................................. 31 IVB.2. Flight Configurations and Conditions ...................................................................................................... 33 IVC. FLIGHT SIMULATION ........................................................................................................................................ 34 IVC.1. MATLAB and Simulink ............................................................................................................................. 34 IVC.2. Simulations ............................................................................................................................................... 35 V. Results and Discussion ........................................................................................................................................ 36 VA. EVALUATION OF AERODYNAMIC PERFORMANCE .............................................................................................. 36 VA.1. Flight Test Methods ................................................................................................................................... 36 VA.2. Data and Plots ........................................................................................................................................... 36 VA.3. Analysis and Discussion ............................................................................................................................ 36 VB. EVALUATION OF DYNAMIC LONGITUDINAL STABILITY .................................................................................... 38 ii i VB.1. Flight Test Methods ................................................................................................................................... 38 VB.2. Data and Plots ........................................................................................................................................... 38 VB.3. Analysis and Discussion ............................................................................................................................ 38 VC. EVALUATION OF ENERGY PERFORMANCE ......................................................................................................... 41 VC.1. Flight Test Methods ................................................................................................................................... 41 VC.2. Data and Plots ........................................................................................................................................... 41 VC.3. Analysis and Discussion ............................................................................................................................ 41 VD. MISSION EVALUATIONS .................................................................................................................................... 42 VD.1. Mission Evaluation #1: Science Traverse ................................................................................................. 42 VD.2. Misison Evaluation #2: Hellas Impact Crater Climb and Descent ........................................................... 42 VD.3. Mission Evaluation #3: Extending the Range of the Argo VII Using a Boost-Glide Technique ............... 42 VD.4. Mission Evaluation #4: Entire Mission Scenario ..................................................................................... 43 VI. Conclusions ......................................................................................................................................................... 44 List of References ........................................................................................................................................................ 46 References ................................................................................................................................................................... 47 Appendices .................................................................................................................................................................. 50 Appendix A ................................................................................................................................................................. 51 Appendix B .................................................................................................................................................................. 71 Appendix C ................................................................................................................................................................ 120 Appendix D ............................................................................................................................................................... 125 Appendix E ................................................................................................................................................................ 136 Appendix F ................................................................................................................................................................ 140 Appendix G ............................................................................................................................................................... 149 Vita ........................................................................................................................................................................... 154 iv List of Tables Table 1. Summary of Mars Airplane Designs ............................................................................................................ 52 Table 2. Influence of Design Requirements on the ARES Design ............................................................................. 52 Table 3. ARES-1 Geometry Parameters ..................................................................................................................... 53 Table 4. ARES-2 Geometry Parameters ..................................................................................................................... 54 Table 5. ARES-2 Predicted Cruise Performance ........................................................................................................ 55 Table 6. ARES-2 Stability and Control Derivatives ................................................................................................... 56 Table 7. Argo VII Weight and Balance Summary ...................................................................................................... 57 Table 8. Argo VII Geometry Parameters .................................................................................................................... 58 Table 9. Argo VII Airfoil Parameters ......................................................................................................................... 59 Table 10. Comparison of Aerodynamic Parameters ................................................................................................... 59 Table 11. Argo VII and ARES-2 Stability and Control Derivatives ........................................................................... 60 Table 12. Argo VII Predicted Cruise Performance ..................................................................................................... 61 Table 13. Comparison of Argo VII and ARES-2 Geometric Parameters ................................................................... 62 Table 14. Comparison of Argo VII and ARES-2 Cruise Performance Parameters .................................................... 63 Table 15. Planetary and Atmospheric Parameters for Earth and Mars ....................................................................... 63 Table 16. Summary of Argo VII Atmospheric Mission Cruise Parameters ............................................................... 64 Table 17. Summary of Mars Surface Conditions ........................................................................................................ 64 Table 18. Summary of Argo VII Atmospheric Mission Cruise Parameters ............................................................... 65 Table 19. Summary of Ryan Navion Principal Dimensions ....................................................................................... 66 Table 20. Test Matrix for Proposed Argo VII Flight Test Plan .................................................................................. 67 Table 21. Gliding Flight Method Simulation Test Matrix .......................................................................................... 67 Table 22. Level Acceleration Method Simulation Test Matrix .................................................................................. 68 Table 23. Long and Short Period, Roller Coaster and Split-S Methods Simulation Test Matrix ............................... 68 Table 24. Summary of Aerodynamic Performance Parameters .................................................................................. 69 Table 25. Summary of Long Period Parameters ......................................................................................................... 69 Table 26. Summary of Short Period Parameters ......................................................................................................... 70 v List of Figures Figure 1. NASA Dryden Mini-Sniffer ........................................................................................................................ 72  Figure 2. DSI, Inc. Astroplane .................................................................................................................................... 72  Figure 3. Early AME Mars Airplane Prototype .......................................................................................................... 73  Figure 4. Final AME Mars Airplane Concept Drawing .............................................................................................. 73  Figure 5. JPL Mars Glider Orville .............................................................................................................................. 74  Figure 6. JPL Mars Glider Wilbur Stowed Under Launch Aircraft ............................................................................ 74  Figure 7. NASA Ames Mars Airborne Geophysical Explorer (MAGE) .................................................................... 75  Figure 8. NASA Ames Canyon Flyer ......................................................................................................................... 75  Figure 9. Aurora Flight Science MarsFlyer ................................................................................................................ 76  Figure 10. NASA Dryden Inflatable Wing Design ..................................................................................................... 76  Figure 11. University of Colorado at Boulder Mars Aerial Research Vehicle (MARV) ............................................ 77  Figure 12. University of Kentucky BIG BLUE .......................................................................................................... 77  Figure 13. EPFL Sky-Sailor ....................................................................................................................................... 78  Figure 14. Cranfield University M-4 Minerva Mars Atmospheric Flight Vehicle ..................................................... 78  Figure 15. ARES Science Traverse Groundtrack ....................................................................................................... 79  Figure 16. NASA ARES-1 ......................................................................................................................................... 80  Figure 17. 3-View of NASA ARES-2 Mars Airplane ................................................................................................ 80  Figure 18. Sd7037 Airfoil Drag Polar, Lift Curve, and Moment Curve ..................................................................... 81  Figure 19. Argo VII Sd7037 Wing-Body Airfoil ....................................................................................................... 81  Figure 20. NACA 0009 Airfoil Drag Polar, Lift Curve, and Moment Curve ............................................................. 82  Figure 21. NACA 0009 Airfoil ................................................................................................................................... 82  Figure 22. NACA 0006 Airfoil Drag Polar, Lift Curve, and Moment Curve ............................................................. 83  Figure 23. NACA 0006 Airfoil ................................................................................................................................... 83  Figure 24. 3-D View of Argo VII with Pressure Distribution Generated by XFLR5 ................................................. 84  Figure 25. Argo VII Drag Polar, Lift Curve, Moment Curve, and L/D Curve ........................................................... 85  Figure 26. 3-View of Argo VII Mars Airplane Design ............................................................................................... 86  Figure 27. Mars and Earth Temperature vs. Altitude ................................................................................................. 87  Figure 28. Mars and Earth Pressure vs. Altitude ........................................................................................................ 88  Figure 29. Mars and Earth Density vs. Altitude ......................................................................................................... 89  Figure 30. Mars and Earth Speed of Sound vs. Altitude ............................................................................................. 90  Figure 31. Example of a Variable Stability System Sensor Calibration Curve .......................................................... 91  Figure 32. Navion Variable Stability System Calibration Curve for P ................................................................... 92  Mα Figure 33. Navion Variable Stability System Calibration Curve for P ................................................................... 93  Mq Figure 34. Pitch Stability Derivative vs. True Airspeed for the Argo VII and Navion Flying on Mars ..................... 94  Figure 35. Pitch Stability Derivative vs. True Airspeed for the Argo VII and Navion Flying on Earth ..................... 95  Figure 36. Pitch Damping Derivative vs. True Airspeed for the Argo VII and Navion Flying on Mars .................... 96  Figure 37. Pitch Damping Derivative vs. True Airspeed for the Argo VII and Navion Flying on Earth ................... 97  Figure 38. UTSI Ryan Navion Variable Stability Research Aircraft (N66UT) .......................................................... 98  Figure 39. Three-View Drawing and Principal Dimensions of Ryan Navion ............................................................ 99  Figure 40. Cockpit of UTSI Ryan Navion (N66UT) Variable Stability Research Aircraft ..................................... 100  Figure 41. Simulink Flight Model for the Argo VII ................................................................................................. 101  Figure 42. Argo VII Lift Curve Acquired from Gliding Flight Method ................................................................... 102  Figure 43. Argo VII Drag Polars for Earth and Mars Altitudes ................................................................................ 103  Figure 44. Argo VII Sink Rates for an Earth Altitude of 2 km (6,562 ft) ................................................................. 104  Figure 45. Argo VII Sink Rates for an Earth Altitude of 21.3 km (70k ft) ............................................................... 105  Figure 46. Argo VII Sink Rates for a Mars Altitude of 1 km (3,281 ft) ................................................................... 106  Figure 47. Argo VII Sink Rates for a Mars Altitude of 2 km (6,562 ft) ................................................................... 107  Figure 48. Argo VII Sink Rates for Earth and Mars Altitudes ................................................................................. 108  Figure 49. Argo VII Long Period Responses at an Earth Altitude of 2 km (6,562 ft) .............................................. 109  v i Figure 50. Argo VII Long Period Responses at an Earth Altitude of 21.3 km (70k ft) ............................................ 110  Figure 51. Argo VII Long Period Responses at a Mars Altitude of 2 km (6,562 ft) ................................................ 111  Figure 52. Argo VII Long Period Responses at Earth and Mars Altitudes ............................................................... 112  Figure 53. Argo VII Short Period Responses at an Earth Altitude of 2 km (6,562 ft) .............................................. 113  Figure 54. Argo VII Short Period Responses at an Earth Altitude of 21.3 km (70k ft) ............................................ 114  Figure 55. Argo VII Short Period Responses at a Mars Altitude of 2 km (6,562 ft) ................................................ 115  Figure 56. Argo VII Short Period Responses at Earth and Mars Altitudes .............................................................. 116  Figure 57. Argo VII True Airspeed versus Time at Mars Altitudes ......................................................................... 117  Figure 58. Argo VII Specific Excess Power versus True Airspeed at Mars Altitudes ............................................. 118  Figure 59. Argo VII Constant Specific Excess Power and Energy Height at Mars Altitudes .................................. 119  vi i

Description:
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee At the Mars mission flight condition, the aircraft had a.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.