Table Of ContentLecture Notes in Economics and Mathematical Systems
For information about Vols. 1-100, please contact your bookseller or Springer-Verlag
Vol. 101: W. M. Wonham, Linear Multivariable Control. ;.. Geo Vol. 129: H.-J. Luthi, Komplementaritllts· und Fixpunktalgorithmen in
metric Approach. X. 344 pages. 1974; der mathematischen Programmierung. Spieltheorie und Okonomie.
VII, 145 Seiten. 1976.
Vol. 102: Analyse Convexe et Ses Applications. Comptes Rendus,
Janvier 1974. Edited by J.-P.. Aubin. IV. 244 pages. 1974. Vol. 130: Multiple Criteria Decision Making, Jouy-en-Josas, France.
Vol. ·103: D. E. Boyce, A. .F arhi, R. Weischedel, Optimal Subset Proceedings 1975. Edited by H. Thiriez and S. Zionts. VI, 409 pages.
Selection. Multiple Regression. Interdependence and Optimal 1976.
Network Algorithms. XIII, 187 pages. 1974. Vol. 131: Mathematical Systems Theory. Proceedings 1975. Edited
Vol. 104: S. Fujino. A Neo-Keynesian Theory of Inflation and by G. Marchesini and S. K. Mitter. X, 408 pages. 1976.
Economic Growth. V, 96 pages. 1974. Vol. 132: U. H. Funke, Mathematical Models in Marketing. A Collec
xx.
Vol. 105: Optimal Control Theory and its Applications. Part I. Pro tion of Abstracta. 514 pages. 1976.
ceedingsl973. Edited by B. J. Kirby. VI, 425 pages. 1974. Vol. 133: Warsaw Fall Seminars in Mathematical Economics 1975.
Edited by M. W. Los, J. Los, and A. Wieczorek. V. 159 pages. 1976.
Vol. 106: Optimal Control Theory and its Applications. Part II. Pro
ceedings 1973. Edited by B. J. Kirby. VI, 403 pages. 1974. Vol. 134: Computing Methods in Applied Sciences and Engineering.
Proceedings 1975. VIII, 390 pages. 1976.
Vol. 107: Control Theory, Numerical Methods and Computer
Systems Modeling. International Symposium, Rocquencourt, June Vol. 135: H. Haga, A Disequilibrium - Equilib!ium Model with Money
17-21,1974. Edited byA. Bensoussan and J. L. Lions. VIII, 757 pages. and Bonds. A Keynesian - Walrasian Synthesis. VI, 119 pages. 1976.
1975. Vol. 136: E. Kofler und G. Menges, Entscheidungen bei unvollstandiger
Vol. 108: f Bauer et al. Supercritical Wing Sections II. A Hand Information ..X II, 357 Seiten. 1976.
book. V, 296 pages. 1975. Vol. 137: R. Wets, Grundlagen Konvexer Optimierung. VI, 146 Seiten.
1976.
Vol. 109: R. von Randow, Introduction to lhe Theory of Matroids.
IX, 102 pages. 1975. Vol. 138: K. Okuguchi, Expectations and Stability in Oligopoly Models.
VI, 103 pages. 1976.
Vol. 110: C. Striebel, Optimal Control of Discrete Time Stochastic
Systems. III, 208 pages. 1975. Vol. 139: Production Theory and Its Applications. Proceedings. Edited
by H. Albach and G. Bergendahl. VIII, 193 pages. 1977.
Vol. 111: Variable Structure Systems with Application to Economics
and Biology. Proceedings 1974. Edited by A. Ruberti and R. R. Mohle,. Vol. 140: W. EiChhorn and J. Voeller, Theory of the Price Index.
VI, 321 pages. 1975. Fisher's Test Approach and Generalizations. VII, 95 pages. 1976.
Vol. 112: J. Wilhelm, Objectives and Multi-objective Decision Making Vol. 141: Mathematical Economics and Game Theory. Essays in Honor
Under UncertanUy. IV, 111 pages. 1975. of Oskar Morgenstern. Edited by R. Henn and O. Moeschlin. XIV,
703 pages. 1977.
Vol. 113: G. A.A schinger, Stabilitltsaussagen Ober Klassen von
Matrizen mit verschwindenden Zeilensummen. V,1 02 Seiten 1975. Vol. 142: J. S. Lane, On Optimal Population Paths. V, 123 pages. 1977.
Vol. 114: G. Uebe, Produktionstheorie. XVII, 301 Seiten. 1976. Vol. 143: B. Naslund, An Analysis of Economic Size Distributions.
Vol." 115: Anderson et aI., Foundations of System Theory: Finitary XV, 100 pages. 1977.
and Infinitary Conditions. VII, 93 pages. 1976 Vol. 144: Convex Analysis and Its Applications. Proceedings 1976.
Vol. 116: K. Miyazawa, Input·Output Analysis and the Structure of Edited by A. Auslender. VI, 219 pages. 1977.
Income Distribution. IX, 135 pages. 1976. Vol. 145: J. RosenmOller, Extreme Games and Their Solutions. IV,
126 pages. 1977:
Vol. 117: Optimization and Operations Research. Proceedings 1975.
Edited by W. OettIi and K. Ritter. IV, 316 pages. 1976. Vol. 146: In Search of Economic Indicators. Edited by W. H. Strigel.
XVI, 198 pages. 1977.
Vol. 118: Traffic Equilibrium Methods, Proceedings 1974. Edited by
M. A Florian. XXIII, 432 pages. 1976. Vol. 147: Resource Allocation and Division of Space. Proceedings.
Edited by T. Fujii and R. Sato. VIII, 184 pages. 1977.
Vol. 119: Inflation in Small Countries. Proceedings 1974. Edited by
Vol. 148: C. E. Mandl, Simulationstechnik und Simulationsmodelle
H. Frisch. VI, 356 pages. 1976.
in den Sozial-und Wirtschaftswissenschaften. IX. 173 Seiten. 1977.
Vol. 120: G. Hasenkamp, Specification and Estimation of Multiple
Output Production Functions. VII, 151 pages. 1976. '«II. 149: Stationare und schrumpfende Bevolkerungen: Demogra
Vol. 121: J. W. Cohen, On Regenerative Processes in Queueing phisches Null-und Negativwachstum in Osterreich. Herausgegeben
Theory. IX, 93 pages. 1976. von G. Feichtinger. VI, 262 Seiten. 1977.
Vol. 122: M. S. Bazaraa, and C. M.S hetty,Foundations of Optimization Vol. 150: Bauer et al., SupercriticalWing Sections III. VI, 179 pages.
VI. 193 pages. 1976 1977.
Vol. 123: Multiple Criteria Decision Making. Kyoto 1975. Edited by '«It 151: C. A Schneewei6, liiventory-PrOduction Theory. VI, 116 pages.
M. Zeleny. XXV1I, 345 pages. 1976. 1977.
Vol. 124: M. J. Todd. The Computation of Fixed Points and Applica Vol. 152: Kirsch et al., Notwendige Optimalitatsbedingungen und
tions. VII, 129 pages. 1976. ihre Anwendung. VI, 157 Seiten. 1978.
Vol. 125: Karl C. Mosler. Qptimale Transportnetze. Zur Bestimmung
Vol. 153: Kombinatorische Entscheidungsprobleme: Methoden und
ihres kostengOnstigsten Standorts bei gegebener Nachfrage. VI,
Anwendungen. Herausgegeben von T. M. Liebling und M. Rossler.
142 Seiten. 1976.
VIII, 206 Seiten. 1978.
Vol. 126: Energy, Regional Science and Public Policy. Energy and
Environment I. Proceedings 1975. Edited by M. Chatterji and P. Van Vol. 154: Problems and Instruments of Business Cycle Analysis.
Rompuy. VIII, 316 pages. 1976. Proceedings 1977. Edited by W. H. Strigel. VI, 442 pages. 1978.
Vol. 127: Environmen~ Regional Science and Interregional Modeling. Vol. 155: Multiple Criteria Problem Solving. Proceedings 1977. Edited
Energy and Environment II. .Proceedings 1975. Edited by M. Chatterji by S. Zionts. VIII, 567 pages. 1978.
and P. Van Rompuy. IX, 211 pages. 1976.
Vol. 156: B. Naslund and B. Sellstedt, Neo-Ricardian Theory. With
Vol. 128: Integer Programming and Related Areas. A Classified Applications to Some Current Economic Problems. VI, 165 pages.
Bibliography. Edited by C. Kastning. XII, 495 pages. 1976. 1978.
continued on ~ 85
Lectu re Notes
in Economics and
Mathematical Systems
Managing Editors: M. Beckmann and W. Krelle
250
Marc Roubens
Philippe Vincke
(Preference Modelling)
Springer-Verlag
Berlin Heidelberg New York Tokyo
editorial Board
H. Albach M. Beckmann (Managing Editor) P. Dhrymes
G. Fandel J. Green W Hildenbrand W. Krelle(Managing Editor) H.P. Kunzi
G.L Nemhauser K. Ritter R. Sato U. Schittko P. Schonfeld R. Selten
Managing Editors
Prof. Dr. M. Beckmann
Brown University
Providence, RI 02912, USA
Prof. Dr. W. Krelle
Institut fur Gesellschafts-und Wirtschaftswissenschaften
der Universitii.t Bonn
Adenauerallee 24-42, 0-5300 Bonn, FRG
Authors
Prof. Dr. Marc Roubens
State University of Mons
Rue de Houdain 9, 7000 Mons, Belgium
Prof. Dr. Philippe Vincke
Free University of Brussels
CPo 210, Boulevard du Triomphe, 1050 Brussels, Belgium
ISBN-13: 978-3-540-15685-7 e-ISBN-13: 978-3-642-46550-5
001: 10.1007/978-3-642-46550-5
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 64 of the German Copyright Law where copies are made for other than private use, a fee is
payable to 'Verwertungsgesellschaft Wort", Munich.
IC by Springer-Verlag Berlin Heidelberg 1985
2142/3140-643210
To Annie and
~chele~
oU!" wi ve s .
INTROIlJCTI <J.I
Preference modelling is an inevitable step in a lot of fields, like
psychology, sociology, operational research, decision theory, •.••
econo~,
This step is sometimes implicit, like in operational research and economy,
where the preferences of the decision-maker are often represented by a func
tion to be optimized; sometimes it is studied in details and based on expe
riments or inquiries, like in multicriteria analysis and mathematical psycho
logy. In any case, more and more scientists have the feeling that this step
is fundamental and cannot be neglected.
It would be impossible to cover all the aspects of preference modelling
in about a hundred pages. The point of view adopted here is essentially moti
vated by recent researches in decision-aid and by the will to treat with well
known tools. Thi sis the reason why the so-ca 11 ed "preference structures" have
been studied according to three specific guidelines: gpaph pepPesentation,
numePioaZ (or functional) PepPesentation and opinion tableau oonfigUPation.
In particular, this text does not cover the following fields: preference data
collection, geometrical representation of preferences, measurement theory and
expected utility theory.
Chapters 1 and 2 form a ground work for the rest of these notes and
include most of the concepts needed later on.
Chapter 3 introduces the usual preference structures which are widely
used in the literature: tournaments, total orders, weak orders, interval
orders, semiorders, partial orders and quasi orders. They are studied according
to the three aspects defined before.
In chapter 4, we introduce two new preference structures, called partial
interval order and partial semi order. They coincide with the corresponding
complete structures when incomparability does not exist and they are compatible
with numerical representations which generalize the partial order and quasi
order cases.
Chapter 5 is devoted to the valued preference structures which appear
in probabilistic or fuzzy contexts. It presents the families of relations that
VI
can be built up on the basis of a valued (or probabilistic) relation. These
families contain, as particular cases, some of the concepts introduced by
ROBERTS and FISHBURN. They are also examined from the view point of numerical
representation.
In chapter 6, the particular case of valued preference structures with
only two distinct values (weak and strong preferences) is presented and some
specific results are established.
This text does not pre-suppose the possession of more than the basic
vocabulary of the relations and graphs theory. All the other concepts are
defined in the context. References have been provided at the end of each
chapter in order to simplify the task of the reader.
These notes have been used as a part of an interuniversity course on
"Preference Modelling and Decision Aid", sponsored by the F.N.R.S. (Fonds
National de 1a Recherche Scientifique). We want to thank the people who
actively participated to this semin r. Special thanks are due to D. BOUYSSOU
and B. MONJARDET for their comments on the manuscript. We wish also to express
our appreciation to Mrs MOBERS for excellent typing.
TABLE OF CONTENTS
CHAPTER 1 BINARY RELATIONS : DEFINITIONS, REPRESENTATIONS,
BASIC PROPERTIES.
1.1. Binary relations •••.••...•.
1.2. Gpaph rep~sentation of binary relations 2
1.3. Coding the binary relations . ..... . 2
1.4. Matrix ~p~sentation of binary relations 2
1.5. Basia properties of binary relations 3
1.6. Partiaular binary relations • .•.. 4
1.7. Graph interpretation of the properties 4
1.8. Algebraia interpretation of the properties 5
1 .9. Re ferenaes • • . • . . . • . . . . • . 5
CHAPTER 2 : THE CONCEPT OF PREFERENCE STRUCTURE.
2.1. Preferenae, indifferenae, inaomparability 6
2.2. Preferenae struat~ . ••....... 6
2.3. Important ag~ement ..•.•.•... 7
2.4. Charaateristia ~lation of a preferenae struature 7
2.5. Graph rep~sentation Of a preferenae struatu~. 8
2.6. Coding the pre ferenae struature 8
2.7. Example •. 9
2.8. Re ferenaes 10
CHAPTER 3 : USUAL PREFERENCE STRUCTURES
3.1. Tournament struatu~ 11
3.2. Total order stt'Uature 14
3.3. Weak order struat~ 18
3.4. Total interval order struatu~ 22
3.5. Total semiorder struature 35
3.6. Partial order struat~ 41
3.7. Quasi order struat~ 48
3.8. Referenaes 52
VIII
CHAPTER 4 : TWO NEW PREFERENCE STRUCTURES
4.1. PazotiaZ intervaZ Ol'del' stl'UCtuzte • 54
4.2. Paz>tiaZ semiOl'del' stl'UCtuzte 61
4.3. Refe~nces ••••••••• 64
CHAPTER 5 : COMPLETE VALUED PREFERENCE STRUCTURES
5.1. Dsfinition • • • 65
5.2. Impol'tant ~maztk • • 65
5.3. Paz>ticuZazo case 65
5.4. Graph l'ep~sentation 66
5.5. MatzticiaZ ~pl'esentation 66
5.6. Pal'ticuZazo compZete vaZued p~fel'ence stl'UCtuztes 67
5.7. Binazty l'eZations and vaztious pl'opel'ties ~Zated to a
compZete vaZued pl'efel'ence stl'Uctuz>e • • • • • • • • 68
5.8. Chazoactel'izations of the famiZies de~ned in section 5.6.. 74
5.9. FunctionaZ ~pl'8sentation of a vaZued pztefeztence stl'UCtUzte 77
5.10.Robel'm homogeneous famiZies of semiOl'del'S 82
5.11.FamiZies of~ak Ol'del'S 83
5. 12 •S U1TU1Iazty 84
5.13.EroampZes • 85
5. 14.Refeztences 86
CHAPTER 6 : COMPLETE TWO-VALUED PREFERENCE STRUCTURES
6.1. Intl'oduction • . ••••••••••••• 87
6.2. Two-vaZued pztefel'ence stl'Uctuz>es with constant ·thzteshoZds 88
6.3. EroampZe 91
6.4. Refeztences ••••••••••••••••••.••••• 92
CHAPTER 1
BINARY RELATIONS: DEFINITIONS. REPRESENTATIONS. BASIC PROPERTIES
1.1. BINARY RELATIONS
Let A denote a finite set of elements a. b. c. , ..
A binary relation S on the set A is a subset of the cartesian product
A x A. that is. a set of ordered pairs (a.b) such that a and b are in A :
SeA x A. If the ordered pair (a.b) belongs to S. we denote indifferently
(a.b) E S or a S b .
c - d
The complement S • the converse S and the dual S are respectively
defined as follows:
(a.b) E SC iff (a.b) ¢ S •
(a.b) E ~ iff (b.a) E S •
(a.b) E Sd iff (b.a) ¢ S
Example
A = {a.b.c.d}
S = {(a.a).(a.c).(b.c).(c.b).(c.d).(d.a).(d.d)}
SC = {(a.b).(a.d).(b.a).(b.b).(b.d).(c.a).(c.c).(d.b).(d.c)}
~ = {(a.a).(c.a).(c.b).(b.c).(d.c).(a.d).(d.d)}
Sd = {(a.b).(a.c).(b.a).(b.b).(b.d).(c.c).(c.d).(d.a).(d.b)}
Remark
Notations
Relations S. SC. ~. Sd being subsets of Ax A. we can use the set-theoric
notations as union. intersection •. ,.
Let Sand T be two relations on the same set A. We denote
2
inclusion SeT iff a S b- a T b, V a,b E A,
union a(S U T)b iff a S b or (inclusive) a T b
i ntersecti on a(S n T)b iff a S b and a T b ,
relative product a S.T b iff 3 c E A a S c and c T b ,
a S2 b iff 3 c E A a S c and c S b •
1.2. GRAPH REPRESENTATION OF BINARY RELATIONS
Every relation S on the set A may be represented using a digraph
(di rected graph) (A, S), where P. is the set of nodes and S the set of arcs.
There exists an arc from a to b iff a S b. When a S a, one undirected loop
is drawn on a (replacing obviously two directed loops).
Example: Graph representation for example of section 1.1.
a b
~
S
1.3. CODING THE BINARY RELATIONS
Coding the relation S comes to consider two different real numbers a
and a and to associate one of these numbers to the ordered pair (a,b) in
the following way:
CSab = a iff a S b ,
C!b = S iff a SC b
In general, the boolean rating is used: a = 1, a = O.
1.4. r~TRIX REPRESENTATION OF BINARY RELATIONS.
Starting with the code related to S, one can consider the tableau ~S
S
with entry a,b (line a, column b) taken to be Cab.