ebook img

Predictive Modeling Applications in Actuarial Science: Volume 1 PDF

563 Pages·2014·5.607 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Predictive Modeling Applications in Actuarial Science: Volume 1

PredictiveModelingApplicationsinActuarialScience VolumeI:PredictiveModelingTechniques Predictive modeling involves the use of data to forecast future events. It relies on capturing relationships between explanatory variables and the predicted variables from past occurrences and exploiting these relationships to predict future outcomes. Forecastingfuturefinancialeventsisacoreactuarialskill–actuariesroutinelyapply predictivemodelingtechniquesininsuranceandotherriskmanagementapplications. This book is for actuaries and other financial analysts who are developing their expertiseinstatisticsandwishtobecomefamiliarwithconcreteexamplesofpredictive modeling. The book also addresses the needs of more seasoned practicing analysts whowouldlikeanoverviewofadvancedstatisticaltopicsthatareparticularlyrelevant inactuarialpractice. PredictiveModelingApplicationsinActuarialScienceemphasizeslife-longlearn- ing by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used by analyststogainacompetitiveadvantageinsituationswithcomplexdata. Edward W. Frees is the Hickman-Larson Professor of Actuarial Science at the WisconsinSchoolofBusiness,UniversityofWisconsin-Madison. Richard A. Derrig is the president of Opal Consulting LLC and a visiting professor of Risk, Insurance, and Healthcare Management at Fox School of Business, Temple University. GlennMeyershasrecentlyretiredasvicepresidentandchiefactuaryatISOInnovative Analytics. INTERNATIONAL SERIES ON ACTUARIAL SCIENCE EditorialBoard ChristopherDaykin(IndependentConsultantandActuary) AngusMacdonald(Heriot-WattUniversity) The International Series on Actuarial Science, published by Cambridge University Press in conjunction with the Institute and Faculty of Actuaries, contains textbooks for students takingcoursesinorrelatedtoactuarialscience,aswellasmoreadvancedworksdesignedfor continuingprofessionaldevelopmentorfordescribingandsynthesizingresearch.Theseries isavehicleforpublishingbooksthatreflectchangesanddevelopmentsinthecurriculum,that encouragetheintroductionofcoursesonactuarialscienceinuniversities,andthatshowhow actuarialsciencecanbeusedinallareaswherethereislong-termfinancialrisk. Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/statistics.Recent titlesincludethefollowing: ComputationandModellinginInsuranceandFinance ErikBølviken SolutionsManualforActuarialMathematicsforLifeContingentRisks(2ndEdition) DavidC.M.Dickson,MaryR.Hardy,&HowardR.Waters ActuarialMathematicsforLifeContingentRisks(2ndEdition) DavidC.M.Dickson,MaryR.Hardy,&HowardR.Waters RiskModellinginGeneralInsurance RogerJ.Gray&SusanM.Pitts FinancialEnterpriseRiskManagement PaulSweeting RegressionModelingwithActuarialandFinancialApplications EdwardW.Frees NonlifeActuarialModels Yiu-KuenTse GeneralizedLinearModelsforInsuranceData PietDeJong&GillianZ.Heller PREDICTIVE MODELING APPLICATIONS IN ACTUARIAL SCIENCE Volume I: Predictive Modeling Techniques Editedby EDWARD W. FREES UniversityofWisconsin,Madison RICHARD A. DERRIG OpalConsultingLLC,Providence,RhodeIsland GLENN MEYERS ISOInnovativeAnalytics,JerseyCity,NewJersey 32AvenueoftheAmericas,NewYork,NY10013-2473,USA CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107029873 ©CambridgeUniversityPress2014 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2014 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Predictivemodelingapplicationsinactuarialscience/[editedby]EdwardW.Frees,University ofWisconsin,Madison,RichardA.Derrig,OpalConsultingLLC,GlennMeyers, ISOInnovativeAnalytics,JerseyCity,NewJersey. volumescm.–(Internationalseriesonactuarialscience) Includesbibliographicalreferencesandindex. Contents:volume1.Predictivemodelingtechniques ISBN978-1-107-02987-3(v.1:hardback) 1.Actuarialscience. 2.Insurance–Mathematicalmodels. 3.Forecasting–Mathematicalmodels. I.Frees,EdwardW. II.Derrig,RichardA. III.Meyers,Glenn. HG8781.P74 2014 368(cid:2).01–dc23 2013049070 ISBN978-1-107-02987-3Hardback Additionalresourcesforthispublicationathttp://research.bus.wisc.edu/PredModelActuaries CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsforexternalorthird-party Internetwebsitesreferredtointhispublicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwill remain,accurateorappropriate. Contents ContributorList pagexiii Acknowledgments xix 1 PredictiveModelinginActuarialScience 1 EdwardW.Frees,RichardA.Derrig,andGlennMeyers 1.1 Introduction 1 1.2 PredictiveModelingandInsuranceCompanyOperations 3 1.3 AShortHistoryofPredictiveModelinginActuarialScience 5 1.4 GoalsoftheSeries 8 References 9 I PredictiveModelingFoundations 2 OverviewofLinearModels 13 MarjorieRosenbergandJamesGuszcza 2.1 Introduction 13 2.2 LinearModelTheorywithExamples 15 2.3 CaseStudy 45 2.4 Conclusion 59 2.5 Exercises 60 References 63 3 RegressionwithCategoricalDependentVariables 65 MontserratGuille´n 3.1 CodingCategoricalVariables 65 3.2 ModelingaBinaryResponse 66 3.3 LogisticRegressionModel 67 3.4 ProbitandOtherBinaryRegressionModels 78 vii viii Contents 3.5 ModelsforOrdinalCategoricalDependentVariables 79 3.6 ModelsforNominalCategoricalDependentVariables 81 3.7 FurtherReading 85 References 86 4 RegressionwithCount-DependentVariables 87 Jean-PhilippeBoucher 4.1 Introduction 87 4.2 PoissonDistribution 87 4.3 PoissonRegression 89 4.4 HeterogeneityintheDistribution 92 4.5 Zero-InflatedDistribution 102 4.6 Conclusion 105 4.7 FurtherReading 105 References 105 5 GeneralizedLinearModels 107 CurtisGaryDean 5.1 IntroductiontoGeneralizedLinearModels 107 5.2 ExponentialFamilyofDistributions 110 5.3 LinkFunctions 115 5.4 MaximumLikelihoodEstimation 118 5.5 GeneralizedLinearModelReview 121 5.6 Applications 122 5.7 ComparingModels 129 5.8 Conclusion 133 5.9 AppendixA.BinomialandGammaDistributionsin ExponentialFamilyForm 133 5.10 AppendixB.CalculatingMeanandVariancefrom ExponentialFamilyForm 135 References 136 6 FrequencyandSeverityModels 138 EdwardW.Frees 6.1 HowFrequencyAugmentsSeverityInformation 138 6.2 SamplingandtheGeneralizedLinearModel 140 6.3 Frequency-SeverityModels 148 6.4 Application:MassachusettsAutomobileClaims 152 6.5 FurtherReading 160 Contents ix 6.6 AppendixA.SampleAverageDistributioninLinear ExponentialFamilies 161 6.7 AppendixB.Over-SamplingClaims 162 References 164 II PredictiveModelingMethods 7 LongitudinalandPanelDataModels 167 EdwardW.Frees 7.1 Introduction 167 7.2 LinearModels 172 7.3 NonlinearModels 176 7.4 AdditionalConsiderations 180 7.5 FurtherReading 181 References 181 8 LinearMixedModels 182 KatrienAntonioandYanweiZhang 8.1 MixedModelsinActuarialScience 182 8.2 LinearMixedModels 192 8.3 Examples 201 8.4 FurtherReadingandIllustrations 213 References 215 9 CredibilityandRegressionModeling 217 VytarasBrazauskas,HaraldDornheim,andPonmalarRatnam 9.1 Introduction 217 9.2 CredibilityandtheLMMFramework 220 9.3 NumericalExamples 224 9.4 TheoryversusPractice 227 9.5 FurtherReading 232 9.6 Appendix 233 References 234 10 Fat-TailedRegressionModels 236 PengShi 10.1 Introduction 236 10.2 Transformation 238 10.3 GLM 241 x Contents 10.4 RegressionwithGeneralizedDistributions 243 10.5 MedianRegression 250 10.6 AppendixA.TailMeasure 255 10.7 AppendixB.InformationMatrixforGB2Regression 256 References 258 11 SpatialModeling 260 EikeBrechmannandClaudiaCzado 11.1 Introduction 260 11.2 ExploratoryAnalysisofSpatialData 262 11.3 SpatialAutoregression 265 11.4 AverageClaimSizeModeling 269 11.5 HierarchicalModelforTotalLoss 273 11.6 DiscussionandConclusion 278 References 278 12 UnsupervisedLearning 280 LouiseFrancis 12.1 Introduction 280 12.2 Datasets 283 12.3 FactorandPrincipalComponentsAnalysis 285 12.4 ClusterAnalysis 294 12.5 Exercises 309 References 310 III BayesianandMixedModeling 13 BayesianComputationalMethods 315 BrianHartman 13.1 WhyBayesian? 315 13.2 PersonalAutomobileClaimsModeling 316 13.3 BasicsofBayesianStatistics 316 13.4 ComputationalMethods 319 13.5 PriorDistributions 326 13.6 Conclusion 330 13.7 FurtherReading 330 References 331 14 BayesianRegressionModels 334 LuisE.Nieto-BarajasandEnriquedeAlba 14.1 Introduction 334

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.