REVIEWARTICLE published:21January2013 doi:10.3389/fpsyg.2012.00620 Predictive feedback and conscious visual experience MatthewF.Panichello1*,OliviaS.Cheung1 andMosheBar1,2 1AthinoulaA.MartinosCenterforBiomedicalImaging,MassachusettsGeneralHospitalandHarvardMedicalSchool,Charlestown,MA,USA 2GondaMultidisciplinaryBrainResearchCenter,Bar-IlanUniversity,Ramat-Gan,Israel Editedby: The human brain continuously generates predictions about the environment based on LarsMuckli,UniversityofGlasgow, learned regularities in the world.These predictions actively and efficiently facilitate the UK interpretation of incoming sensory information.We review evidence that, as a result of Reviewedby: this facilitation, predictions directly influence conscious experience. Specifically, we pro- AnilK.Seth,UniversityofSussex,UK EdwardVul,MassachusettsInstitute posethatpredictionsenablerapidgenerationofconsciousperceptsandbiasthecontents ofTechnology,USA ofawarenessinsituationsofuncertainty.Thepossibleneuralmechanismsunderlyingthis RobertD.Gordon,NorthDakotaState facilitationarediscussed. University,USA *Correspondence: Keywords:predictions,context,objectrecognition,priming,visualawareness,top-down,perception,associative MatthewF.Panichello,Martinos processing CenterforBiomedicalImaging,149 ThirteenthStreet,Suite2301, Charlestown,MA02129,USA. e-mail:[email protected]. harvard.edu INTRODUCTION and with less interference by sensory noise. In other words,the Perceptionhasevolvedtotransformrawsensorysignalsintoinfor- expectation elicited by a yellow traffic light may cause a driver mation that can guide behavior. But perception is not a purely to consciously perceive the subsequent red light more quickly stimulus-driven phenomenon; the brain perceives the world than otherwise possible. We conclude by discussing the neural proactively. Endogenous influences, such as attention, memory, mechanismsunderlyingthesepredictiveinfluences. andmood,guideperceptiontoensurethatinformativerepresen- tationsoftheenvironmentaregeneratedasefficientlyaspossible. PREDICTIONSINFLUENCECONSCIOUSPERCEPTION In this review, we focus on the influence of predictions on PREDICTIONSGUIDETHEINTERPRETATIONOFAMBIGUOUSSTIMULI visualperception.Thepredictionswediscussarenotanalogousto Onemethodforstudyingtheinfluenceofpredictionsonaware- the deliberate,elaborative foresight that individuals may engage nessistoshowobserversstimuliwithmultipleperceptualinter- inwhenplanningforthefuture(e.g.,thinkingaboutwhichroute pretationsanddetermineifpredictionsaffectwhattheysee.The homefromworkwillhavetheleasttraffic).Instead,weusetheterm popularperceptualphenomenonknownasbinocularrivalrypro- “prediction” here to refer to expectations about the immediate vides a convenient means to accomplish this. Binocular rivalry sensory environment based on previous experience and learn- occurswhenauniqueimageispresentedtoeacheye;interpreta- ing.Througheverydayexperience,individualslearnmanytypes tionofthestimuliisinherentlyambiguousbecausethetwoeyes of regularitiesintheworld,suchasassociationsamongitemsor provideconflictinginformationaboutthesharedportionof the events.Forexample,ayellowtrafficlightisalmostalwaysfollowed visualfield.Thebrainmustworkoutthemostlikelyinterpreta- byaredlight.Insofarastheenvironmentisgenerallyregular,it tionofthisimpossibleinput(Hohwyetal.,2008).Theresolution is,toanextent,predictable.Expectationsabouttheenvironment of this problem is striking:the two stimuli do not fuse together canbederivedfromtheselearnedregularitiesandusedtoguide intoablendedpercept,butratheralternatelydominateperception sensoryprocessing,presumablyviatop-down(descending)pro- (forreviewsofbinocularrivalryandmultistableperceptionmore jectionslinkingbrainregionsinvolvedingeneratingexpectations generally,seeLeopoldandLogothetis,1999;BlakeandLogothetis, withlower-levelsensoryregions. 2002;Sterzeretal.,2009). If predictions guide processing in visual areas,it follows that Binocular rivalry is sensitive to many factors,including low- thisfacilitationmayhaveconsequencesforconsciousperception1. level stimulus properties (e.g., Kaplan and Metlay, 1964; Fahle, Wearguethatpredictivemechanismsmayshapethecontentsof 1982)andhigher-orderendogenousinfluencessuchasattention, visual awareness during instances of sensory ambiguity, allow- imagery,andaffect(e.g.,OoiandHe,1999;Pearsonetal.,2008; ing subjective experience of the world to remain informative Andersonetal.,2011),soasingleprocessormechanismshould and coherent. Additionally, when sensory input is less ambigu- not be credited as the“source”of rivalry (Blake and Logothetis, ous,predictionsmayallowperceptstobegeneratedmorequickly 2002). However, recent findings suggest that predictions play a roleinresolvingtheambiguityinherentinthisphenomenon.For 1Weuse“subjectivevisualexperience,”“consciousperception,”and“visualaware- example,a stimulus will tend to dominate rivalry if it has been ness”interchangeablytorefertothephenomenologicalexperienceofseeing,distinct presented more frequently than the competing stimulus in the fromotherformsofconsciousnesssuchasself-awareness. recentpast;thelikelihoodofeachstimulusisestimatedbasedon www.frontiersin.org January2013|Volume3|Article620|1 Panichelloetal. Predictionsandconsciousperception recentexperience,generatingexpectationsthatcanguidepercep- Bistable figures have two mutually exclusive interpretations that tion(ChopinandMamassian,2012).Thetendencyofstimulito alternatelydominateawarenessduringviewing.However,apre- change position smoothly during motion can also provide pre- dictivecuerelatedtooneoftheinterpretationsofabistablefigure dictive cues for perception. Thus, observers who view a stream can bias perception in favor of that interpretation (Figure 2A; ofimagesdepictingarotatinggratingaremorelikelytoperceive BugelskiandAlampay,1961;BalcetisandDale,2007;Goolkasian the stimulus consistent with the rotation trajectory at the onset andWoodberry,2010).Stimulicanalsodisplaybistablemotion; of rivalry (Figure 1A; Denison et al., 2011). Verbal stimuli can anarrayofmovingdotstimulicanbearrangedsothatobservers also produce an expectation for semantically related stimuli. To perceive a rotating cylinder with spontaneous reversals in rota- demonstratethis,Costelloetal.(2009)usedavariantofbinocular tion direction. However, when observers are led to expect that rivalry,termedcontinuousflashsuppression,whichreliesonthe thecylinderwillconsistentlyrotateinaparticulardirection,this tendencyofhigh-contrastdynamicnoisetodominateawareness interpretationdominatesperception(Sterzeretal.,2008). when presented in rivalry with another stimulus (Tsuchiya and Intriguingly,predictionscanaltertheperceptionofstimulithat Koch,2005).Costelloetal.foundthatawordpresentedtooneeye are normally perceptually stable. For example,most individuals breakssuppressionbyhighfrequencynoisepresentedtotheother see the left disk in Figure 2B as a convex and the right disk as eyemorequicklywhenasemanticallyrelatedprimeisdisplayed concave. However,the contour of each disk is actually ambigu- priortorivalry(Figure1B). ous:thissubjectiveinterpretationisdrivenbytheshadingofthe Inadditiontobinocularrivalry,bistablefiguresrevealtheabil- figuresandthelearnedassumptionthat“lightcomesfromabove” ity of top-down predictions to influence conscious perception. (Brewster,1826;SunandPerona,1998;Adamsetal.,2004).New experiencecontradictingthisassumptioncancauseasubstantial FIGURE1|Predictionsaffecttheoutcomeofbinocularrivalry.(A) Whenastreamofimagesdepictingagratingrotatingin45˚incrementsis FIGURE2|Predictionsaffecttheinterpretationofambiguousstimuli. presentedtobotheyes,observersaremorelikelytoperceivethegrating (A)Exampleofanambiguousfigurewithitstwopossibleperceptual consistentwiththispattern(the“matchingeye”stimulus)attheonsetof interpretationsemphasized(left).Viewingaprimerelatedtooneofthe rivalry.Adapted,undercreativecommonslicense,fromDenisonetal. interpretations(right)biasesperceptioninfavorofthatinterpretation. (2011).(B)Awordprime(“salt”)causesasemanticallyrelatedtargetword Adapted,withpermission,fromGoolkasianandWoodberry(2010). (“pepper”;lefteye)tobreaksuppressionbydynamicnoise(righteye) Copyright©bySpringerPublishing.(B)Thesetwodisksappeartobe duringrivalrymorequicklythanwhentheprimeandtargetarenotrelated. concaveandconvex,respectively,duetolearnedassumptionthatlight Theincreasingcontrastofthetargetovertimehelpsensurethatthetarget comesfromabove.Experienceviolatingthisassumptioncausesanew eventuallybreakssuppression.Adapted,withpermission,fromCostello shadingschemetomaximallyevoketheillusionofcontour.Adaptedfrom etal.(2009). Adamsetal.(2004).Copyright©byNaturePublishingGroup. FrontiersinPsychology|PerceptionScience January2013|Volume3|Article620|2 Panichelloetal. Predictionsandconsciousperception shiftininferredlightposition;asaresult,anewshadingscheme “contextframes”(Friedman,1979).Cueswithinascenecanacti- willmaximallyevoketheillusionofcontour(Adamsetal.,2004). vateassociatedcontextframes,allowingobserverstopredictother Similarly,individualslearnovertimethatfast-movingobjectsare features of the environment (Bar, 2004). Accordingly, observers lesscommonthanslowmovingandstationaryobjects,producing identifyobjectsfasterandmoreaccuratelywhentheyareshown anexpectationthatcanguideperception.Newvisualexperience in their typical environment (e.g., a toaster in the kitchen, Bie- dominatedbyfast-movingstimulialtersthisexpectation,andby derman,1972; Palmer,1975; Biederman et al.,1982; Davenport extension,subsequentmotionperception(StockerandSimoncelli, and Potter,2004) or are preceded by an object drawn from the 2006; Sotiropoulos et al.,2011). Together,these studies demon- samecontext(e.g.,abedroomdresserandavanitymirror,Gronau strate that predictions derived from experience can affect how etal.,2008;seealsoSachsetal.,2011).Conversely,recognitionis observersseetheworld. impairedwhentheexpectedspatialrelationshipsamongobjects inascenearedisrupted(Biederman,1972). PREDICTIONSFACILITATEPERCEPTIONDURINGOBJECTRECOGNITION Associations among stimuli can be reinforced over a lifetime Evenwhenvisualinputisnotambiguous,predictivemechanisms ofexperience.However,theycanalsobegeneratedquitequickly mayinfluenceconsciousperception.Wehypothesizethatpredic- underartificialconditionsinthelaboratory(e.g.,ChunandJiang, tions allow conscious percepts to be generated more efficiently 1998,1999;Aminoffetal.,2007;Kimetal.,2009;denOudenetal., and with less inhibition by sensory noise2. The most direct evi- 2010;Turk-Browneetal.,2010).Thus,associativelearningappears denceforthisclaimisprovidedbystudiesshowingthatpredictions tobequiteflexibleandcontinuouslyupdated.Forinstance,ina can facilitate perception of objects when visual input is noisy. studyofperceptualprediction(denOudenetal.,2010),observers Observers viewing fragmented object figures are more likely to were asked to judge whether a degraded image depicted a face perceive the objects when they are informed about their cate- or a house. An auditory cue presented at the start of each trial gory(e.g.,“ananimal”foranelephant;Reynolds,1985).Similarly, signaledwhichstimulustypewasmorelikelytoappear,andthe observersinstructedtoindicatetheirsubjectivevisualexperience experimentersmanipulatedthepredictivestrengthof thesecues report successfully perceiving expected stimuli at greater levels over time. Modeling of the behavioral data demonstrated that of degradation or lower contrast than unexpected stimuli (Eger observersupdatedtheirestimatesofstimuluscategorylikelihood etal.,2007;EstermanandYantis,2010;Mellonietal.,2011).Inthe on a trial-by-trial basis and responded more quickly when cues latterstudy,electrophysiologicalactivityevokedbyexpectedstim- werehighlypredictive. ulicorrelatedwithsubjectiveexperienceearlierthanthatevoked Apart from learned associations among stimuli, preliminary by unexpected stimuli, suggesting that predictions reduced the processingofvisualinformationcanalsocreateexpectanciesthat latencyofneuralactivityrelatedtoconsciousperception(Melloni facilitate perception.Visual stimuli contain information distrib- etal.,2011). utedacrossarangeofspatialfrequencies(Figure3A).Lowspatial Alargebodyof researchdemonstratesthatpredictionsmake frequency(LSF)informationisrapidlyextractedfromincoming objectrecognitionfasterandmoreaccurate.Thesestudiesprovide sensoryinputandencodesgrosspropertiessuchastheglobalshape additional,althoughindirect,evidenceforpredictivefacilitationof oftheenvironmentanditsconstituentobjects(Figure3B).Incon- consciousperception.Theseresultsmustbeinterpretedwithcau- trast,highspatialfrequency(HSF)informationisprocessedmore tion for two reasons. First, object recognition is a multifaceted slowlyandcorrespondstoedgesandfinedetails(Figure3C;Shap- process,withmultiplestagesthatmaybeamenabletoinfluenceby ley,1990;SchynsandOliva,1994;Baretal.,2006).Itispossible predictivemechanisms(e.g.,theassignmentofsemanticattributes that LSF information can elicit predictions (Bar, 2003) because totheperceivedobject).Second,mostofthestudiescitedbelow objects in the same basic-level category often display a similar examined the influence of predictions on behavioral proxies of global shape (Rosch et al., 1976). For example, individual dogs recognition such as reaction time rather than subjective reports varytremendously,butalldogsshareroughlythesamegrossfea- ofperception.However,itwillbeworthwhileforfutureresearch tures (e.g.,four legs and a tail),which immediately differentiate todetermineifpredictivefacilitationofobjectrecognitionisdue, them from members of many other basic-level categories. With atleastinpart,tofasterandmoreaccurategenerationof object experience,wecometolearnthedefiningfeaturesofmanykinds percepts. ofobjects.Thus,whileLSFinformationlacksfinedetail,itissuf- Forinstance,contextualfacilitationofobjectrecognitionarises ficienttotriggergeneralcategoryinformationstoredinmemory from the knowledge that certain objects often reliably co-occur that guides interpretation of the stimulus (Bar,2003; Bar et al., inparticularsettings.Cubiclesandcopymachines,butnotocto- 2006;OlivaandTorralba,2007).Inadditiontoindividualobjects, puses and cars, are found inside office buildings. Furthermore, differentexemplarsofbasic-levelscenes(suchasacitystreet)also objectswithinacontextareoftenarrangedinaregularmanner: shareglobalfeaturesthatcanconstrainandfacilitaterecognition computer monitors rest on desks inside of cubicles. Over time, (Bar,2004;OlivaandTorralba,2007).Thus,rapidprocessingof observerslearnmanysetsofsuchregularities,termedschemataor LSFinformationmayexplaintheremarkableabilityofobservers toextractthe“gist”ofasceneataglance(Biedermanetal.,1974; Thorpeetal.,1996;OlivaandTorralba,2007). 2When interpreting the influence of predictions on perception,it is important Tosummarize,predictionsmayshapethecontentsofawareness to consider potential contributions of attention because the two may be easily whenvisualinputisambiguousandenablefasterandmoresen- confounded. However, attention and prediction are dissociable in several ways (Hohwy,2012;SummerfieldandEgner,2009)andeffortshavebeguntoelucidate sitive conscious perception under less strenuous circumstances. theindependentcontributionsofeachtoperception(Wyartetal.,2012). The ability of predictions to shape perception under conditions www.frontiersin.org January2013|Volume3|Article620|3 Panichelloetal. Predictionsandconsciousperception FIGURE3|Animagefilteredtoinclude(A)bothlowandhighspatialfrequencyinformation(B)predominantlylowspatialfrequencies (C)predominantlyhighspatialfrequencies.Thelowspatialfrequencyinformationin(B)isnotsufficienttoidentifythepolarbearbutnevertheless substantiallyconstrainsthepossibleinterpretationsofthestimulus. of uncertainty is clearly advantageous; it is better to generate a Thispredictivecodingframeworkhastraditionallybeenpre- meaningful interpretation of the world, informed by previous sentedwiththehierarchicalorganizationofsensorycortexinmind experience, than to faithfully represent a noisy sensory signal. (e.g., Mumford, 1992; Friston, 2005). However, the existence of When visual input is more informative, predictions still guide reciprocal connections between prefrontal and visual cortices in sensory processing to make conscious perception as efficient as themacaque (Websteretal.,1994;Cavadaetal.,2000)andevi- possible.Notethatalthoughwesuggestthatpredictionsinfluence dence of functional interaction between prefrontal and inferior consciousexperience,predictionsthemselvesmaybelearnedand temporalregionsinhumans(e.g.,Baretal.,2006;Kveragaetal., appliedwithoutawareness(e.g.,ChunandJiang,1998,1999;Kim 2007;Axmacheretal.,2008)arewelldocumented.Thesefindings etal.,2009;Turk-Browneetal.,2010).Wenextconsiderhow,at suggest that prefrontal regions provide an additional source of theneurallevel,predictionsmayguideperception. feedbacktothevisualhierarchy(butnotethatprefrontalregions do not seem to be arranged hierarchically with respect to each THENEURALBASISOFPREDICTION other;Yeoetal.,2011).Accordingly,expectation-basedprefrontal DESCENDINGCORTICO–CORTICOPROJECTIONSALLOWPREDICTIONS modulation of sensory processing has been reported (Bar et al., TOGUIDESENSORYPROCESSING 2006; Summerfield et al., 2006; Eger et al., 2007; Kveraga et al., An increasingly popular framework (e.g., Mumford, 1992; Rao 2007;Gamondetal.,2011).Predictivemechanismsmaythusbe andBallard,1999;Friston,2005;FristonandKiebel,2009),termed instantiatedinavarietyofbrainregions,butconsistentlyseemto “predictivecoding”,positsthattop-downpredictionsfacilitateper- dependontheuseofdescendingconnectionstoallowthedynamic ceptionbyreducingtheneedtoreconstructtheenvironmentvia comparisonofpredictionswithsensoryinput. exhaustivebottom-upanalysisofincomingsensoryinformation. Converging imaging and computational evidence supports Validatedpredictionsefficientlyexplainawaysomeofthesensory the proposed role of predictive feedback during perception. If input, conserving resources for analysis of unpredicted compo- descending predictions efficiently facilitate the interpretation of nents. The hierarchical organization of sensory cortex suggests sensory input, then predicted stimuli should evoke less activity a natural computational architecture for the integration of top- insensorycortex,consistentwiththenotionthatstimulus-driven downpredictionsandbottom-upsensoryinformation.Ascending activityconveysan“errorterm”communicatingtheremainderof projectionsinsensorycortexaresparseandfocused,terminating thesignalthathasnotbeenexplainedbytop-downpredictions. in predominately layer 4 of cortical targets,whereas descending Thiseffectshouldbeespeciallypronouncedinvisualprocessing connections project to a larger number of region and innervate regionsthatareparticularlydevotedtotheprocessingofthepre- their targets in superficial and deep layers of cortex (Felleman dicted stimuli. Accordingly, shapes that appear in an expected andVan Essen,1991;Friston,2009). Predictive coding proposes location in the visual field elicit less activity in the retinotopic thatdescendingprojectionsconveypredictionsaboutthecontent regionV1(Alinketal.,2010),andexpectedfaceandplacestimuli ororganizationofthesensoryinput.Ascendingprojectionscon- elicitlessactivityinfaceandplace-sensitiveregionsofhigh-level vey any information incongruent with the predictions (i.e., an visualcortex(Egneretal.,2010). “errorterm”)receivedfromhighersensoryareas.Thus,recipro- Moreover,becausepredictivefeedbackfromhigher-levelpro- cally connected cortical areas are able to engage in a dynamic cessingregionsshapestheactivityoflower-levelsensoryregions, process in which predictions are modified based on incoming activity in lower-level sensory regions should track surprisingly sensory input until the higher-level region is able to arrive at sophisticated aspects of the sensory input. A subset of retino- reasonableapproximationoftheincominginput(Ullman,1995; topic neurons in visual cortex seem sensitive to stimuli outside Friston,2005). oftheirreceptivefields,apropertyreplicatedinacomputational FrontiersinPsychology|PerceptionScience January2013|Volume3|Article620|4 Panichelloetal. Predictionsandconsciousperception model of visual cortex allowing for predictive feedback to these cells(RaoandBallard,1999).Similarly,activityinlow-levelretino- topicvisualareasvarieswithimagerecognition(Hsiehetal.,2010; seealsoGorlinetal.,2012),consciousexperienceoffigure-ground segregation(Lammeetal.,1998,2002),andtargetdetection(Supèr et al.,2001),implicating top-down modulation by higher-order areas. Tosummarize,expectationsderivedfromlearnedregularities are able to guide perception via descending feedback targeting sensory regions. We next elaborate on these ideas by reviewing the neural mechanisms for two previously discussed predictive processes:predictionsbasedoncontextualassociationsandpre- dictions based on preliminary LSF information extracted from stimuli. Different neural generators may support these mecha- FIGURE4|Thecontextnetwork.Acontrastofstrongandweakcontext nisms, but evidence suggests that both may require interaction objectstimuli,revealingthecontextnetworkonthelefthemisphereofan betweenhighercorticalareasandvisualcortextoallowtop-down inflatedcorticalsurface.RSC,retrosplenialcomplex;PHC,parahippocampal predictionstoshapesensoryprocessing. cortex;MPFC,medialprefrontalcortex.ReprintedfromKveragaetal. (2011).Copyright©byNationalAcademyofSciences/HighwirePress. PREDICTIONSBASEDONCONTEXTUALASSOCIATIONSAMONG OBJECTS In the previous section,we have suggested that contextual asso- Malachetal.,1995;Grill-Spectoretal.,2001).Contextualinfor- ciations among objects can create expectancies that guide per- mation modulates LOC response during recognition (Altmann ception.Adistributednetworkincludingparahippocampalcortex etal.,2004;Gronauetal.,2008;MacEvoyandEpstein,2011),sug- (PHC),retrosplenialcomplex(RSC),andmedialprefrontalcor- gesting that this region may be receiving feedback signals from tex(mPFC)mediatesthesecontextualassociations(Figure4;Bar contextualprocessingregions.Furtherresearchwillneedtoclar- andAminoff,2003;Kveragaetal.,2011).Tolocalizethiscontext ifythepreciseneuralmechanismbywhichcontextualpredictions network, activity elicited by objects that are strongly associated guideprocessinginsensorycortex. withaparticularcontextiscomparedwiththatelicitedbyobjects that are only weakly associated with any particular context. For PREDICTIONSBASEDONLOWSPATIALFREQUENCYINFORMATION example, golf carts are usually found in the context of a golf Theprefrontalcortex,specificallyorbitofrontalcortex(OFC),may course and are thus closely associated with other objects that playacriticalroleingeneratingpredictionsbasedonLSFinfor- share this context such as golf clubs and golf balls, while cam- mation(Bar,2003;Baretal.,2006).Inthisproposedframework, eraslackstrongassociationsbecausetheyarefoundinavariety LSFinformationisextractedfromvisualinputandprojectedto of contexts and thus do not consistently appear with any par- OFCviathemagnocellularcellsofthedorsalvisualstream,which ticular set of objects (Bar and Aminoff, 2003; stimuli available preferentially respond to and rapidly conduct LSF information at http://barlab.mgh.harvard.edu/ContextLocalizer.htm). Thus, (Maunselletal.,1990;Shapley,1990;MeriganandMaunsell,1993; associative processing seems to specifically engage these context BullierandNowak,1995;Chenetal.,2007).Aswehavesuggested, networkregions.Furthersupportforthisclaimisprovidedbythe thecoarserepresentationsconveyedbyLSFsaresufficienttoacti- factthattheseregionsarerecruitedinavarietyoftasksthatcallon vateasubsetof possiblecandidatesregardingtheidentityof the contextualassociations,suchasmemoryencoding(Peters etal., visual input (Bar, 2003). These predictions are then projected 2009), navigation (Rauchs et al.,2008; Brown et al.,2010), and back to object recognition regions in inferior temporal cortex, futurethought(Szpunaretal.,2009). facilitatingperception(Baretal.,2006). There are several mechanisms by which contextual process- Consistentwiththisproposal,LSFimagesevokeactivityinOFC ingmaymodulateactivityinregionsrelatedtovisualperception. priortoinferiortemporalareas;thus,LSFinformationreachespre- PHC itself is situated in the ventral visual stream and lesions frontalcortexquicklyenoughtoinfluencerecognitionprocesses of this region in the monkey severely impair object recognition intheventralvisualstream(Baretal.,2006).Furthermore,LSF (Buckley and Gaffan, 1998; Murray and Mishkin, 1998). Thus, imageselicitsignificantfunctionalcouplingbetweenearlyvisual onepossibilityisthatothercontextnetworkregionsfacilitatethe areasandOFCandbetweenOFCandventralstreamareas(peak- emergenceofsituation-specificrepresentationsinPHCinatop- ing approximately 85 and 135ms post-stimulus, respectively) downmanner(Bar,2007;Baretal.,2008).MEGrecordingshave while HSF images do not (Bar et al., 2006). These findings are shownthatstrongcontextobjectselicitphase-locking(ameasure consistent with the rapid transmission of LSF information to of functional interaction) between PHC and other context net- OFC, followed by top-down feedback from OFC to the ventral workregionsasearlyas170msafterstimulusonset(Kveragaetal., stream. 2011),suggestingthattheinteractionbetweentheseregionscan FacilitatoryfeedbackoriginatinginOFChasalsobeenshown occurearlyenoughtoinfluenceperception.Alternatively,context usingstimulidesignedtopreferentiallystimulatethedorsalmag- network regions may also influence processing in lateral occipi- nocellular pathway (Kveraga et al., 2007). Magnocellular cells talcortex(LOC),aregionimplicatedinobjectrecognition(e.g., are sensitive to small differences in luminance contrast but are www.frontiersin.org January2013|Volume3|Article620|5 Panichelloetal. Predictionsandconsciousperception insensitive to color, whereas the parvocellular cells known to predictions may help select the contents of awareness, main- dominate the ventral stream are sensitive to color but relatively tainingacoherentinterpretationoftheenvironment.Underless insensitivetoluminance(LivingstoneandHubel,1988).Accord- demandingconditions,predictionsmaystillinfluenceawareness, ingly, line drawings of objects in which figure and ground are allowingperceptstobegeneratedmorequicklyandwithlessinter- identicalincolorbutslightlydifferentinluminancepreferentially ference by sensory noise. To support these arguments, we have stimulatemagnocellularcells(i.e.,“M-biased”stimuli;Steinman drawn on observations from a wide variety of domains,includ- and Steinman, 1997; Cheng et al., 2004; Kveraga et al., 2007). ingtheresolutionof binocularrivalry,perceptionof ambiguous Suchstimulicanbeusedtoexaminewhetherthemagnocellular figures, associative learning, and other phenomena. We suggest, pathwayisindeedimportantforconveyinginformationtoOFC, however,thatallof thesestudiesindexthefactthathumansare enablingtop-downfacilitation.Indeed,M-biasedstimuliprefer- highly adept at extracting consistencies in the world and using entially stimulate OFC and elicit functional interaction between thisknowledgetogenerateexpectationsabouttheimmediatesen- earlyvisualareas,OFC,andinferiortemporalcortex(Kveragaetal., soryenvironment.Althoughdifferentinstancesofpredictionmay 2007).Furthermore,thedegreeofOFCactivationelicitedbyM- recruitdifferentcorticalregions,predictivemechanismsarelikely biasedstimuliisinverselycorrelatedwithreactiontimeforobject instantiatedasdynamictop-downmodulationof sensorycortex recognition,suggesting that the processing occurring in OFC is byhighersensoryandprefrontalareasengagedincomparatively indeedfacilitatingperception(Kveragaetal.,2007).Intriguingly, abstract processing. Via this modulation, predictions about the despite this facilitation,M-biased stimuli elicited less activity in environmentgeneratedinhigher-levelcorticalregionscanguide ventral visual regions than stimuli designed to stimulate parvo- perception. cellularcells,providingindirectevidencethatpredictivefeedback Given that the specific neural processes that give rise to mayreducetheneedforexhaustivebottom-upprocessingduring conscious perception remain unclear, it is difficult to conjec- recognition. ture precisely how predictive feedback influences the contents WehavesuggestedthatLSFrepresentationsinOFCtriggerasso- of awareness.However,itisintriguingthatanumberof promi- ciationswithobjectandcategoryinformationstoredinmemory, nenttheoriespositthattop-downfeedbackmayplayanimpor- whichthenserveaspredictionsthatguidesensoryprocessing.To tant role in generating the neural states postulated to account activatememoryrepresentations,OFCshouldinteractwithhip- for consciousness (Tononi and Edelman, 1998; Lamme, 2010; pocampalregionsinthemedialtemporallobe,knowntosupport Dehaene and Changeux,2011;Meyer,2012). Indeed,disrupting long-termmemory(forareview,seeSquireetal.,2004).Indeed, top-down processes seems to impair awareness (Pascual-Leone OFCandmedialtemporalregionshavebeenshowntoberecip- and Walsh, 2001; Ro et al., 2003; Fahrenfort et al., 2007; Dux rocally connected in non-human primates (Rempel-Clower and et al., 2010). Perhaps predictions play not only a modulatory Barbas, 2000). In humans, OFC engages in functional coupling but a driving role in awareness, particularly when other top- withthemedialtemporallobeduringmemoryretrieval(Nyberg downprocessessuchasattentionarenotengaged.Futureresearch etal.,1995;Piefkeetal.,2003;TsukiuraandCabeza,2008;Ander- shouldexplorewhetheranindividual’sthresholdforvisualaware- sonetal.,2010;Colgin,2011).Itwillbeimportanttofurtherclarify nessincreaseswhenpredictiveprocessesareimpaired,suchasin the possibility that OFC engages in association-based memory depression in which associative processing may be limited (Bar, retrievalduringvisualperception. 2009). SUMMARYANDCONCLUSION ACKNOWLEDGMENTS We have reviewed evidence that predictions have consequences ThisworkwassupportedbyNSFgrantBCS-0842947andDARPA for conscious perception. When visual input is ambiguous, grantN10AP20036. REFERENCES nonspatialassociations.Cereb.Cor- inferior temporal regions during Bar, M. (2009). A cognitive neuro- Adams,W.J.,Graf,E.W.,andErnst,M. tex17,1493–1503. visual working memory: a com- science hypothesis of mood and O.(2004).Experiencecanchangethe Anderson,E.,Siegel,E.H.,andBarrett, bined intracranial EEG and func- depression.TrendsCogn.Sci.(Regul. ‘light-from-above’prior. Nat. Neu- L. F. (2011). What you feel influ- tionalmagneticresonanceimaging Ed.)13,456–463. rosci.7,1057–1058. enceswhatyousee:theroleofaffec- study.J.Neurosci.28,7304–7312. Bar,M.,andAminoff,E.(2003).Corti- Alink,A.,Schwiedrzik,C. M.,Kohler, tive feelings in resolving binocular Balcetis,E.,andDale,R.(2007).Con- calanalysisofvisualcontext.Neuron A.,Singer,W.,andMuckli,L.(2010). rivalry. J. Exp. Soc. Psychol. 47, ceptualsetasatop–downconstraint 38,347–358. Stimulus predictability reduces 856–860. onvisualobjectidentification.Per- Bar,M.,Aminoff,E.,andSchacter,D.L. responsesinprimaryvisualcortex. Anderson, K. L., Rajagovindan, R., ception36,581–595. (2008).Scenesunseen:theparahip- J.Neurosci.30,2960–2966. Ghacibeh,G.A.,Meador,K.J.,and Bar,M.(2003).Acorticalmechanism pocampal cortex intrinsically sub- Altmann, C. F., Deubelius, A., and Ding,M.(2010).Thetaoscillations fortriggeringtop-downfacilitation serves contextual associations, not Kourtzi, Z. (2004). Shape saliency mediate interaction between pre- invisualobjectrecognition.J.Cogn. scenesorplacesperse.J.Neurosci. modulates contextual processing frontal cortex and medial tempo- Neurosci.15,600–609. 28,8539–8544. in the human lateral occipital rallobeinhumanmemory.Cereb. Bar,M.(2004).Visualobjectsincontext. Bar, M., Kassam, K. S., Ghuman, A. complex. J. Cogn. Neurosci. 16, Cortex20,1604–1612. Nat.Rev.Neurosci.5,617–629. S., Boshyan, J., Schmid, A. M., 794–804. Axmacher,N.,Schmitz,D.P.,Wagner, Bar, M. (2007). The proactive brain: Dale, A. M., et al. (2006). Top- Aminoff, E., Gronau, N., and Bar, T.,Elger,C.E.,andFell,J.(2008). usinganalogiesandassociationsto downfacilitationofvisualrecogni- M. (2007). The parahippocam- Interactions between medial tem- generate predictions. Trends Cogn. tion.Proc.Natl.Acad.Sci.U.S.A.103, pal cortex mediates spatial and poral lobe, prefrontal cortex, and Sci.(Regul.Ed.)11,280–289. 449–454. FrontiersinPsychology|PerceptionScience January2013|Volume3|Article620|6 Panichelloetal. Predictionsandconsciousperception Biederman,I. (1972). Perceiving real- implicitlearningof visualcovaria- R. Soc. Lond. B Biol. Sci. 360, Lamme, V. A. F. (2010). How neu- worldscenes.Science177,77–80. tion.Psychol.Sci.10,360–365. 815–836. roscience will change our view on Biederman, I., Mezzanotte, R. J., and Colgin,L. L. (2011). Oscillations and Friston, K. J. (2009). The free-energy consciousness. Cogn. Neurosci. 1, Rabinowitz, J. C. (1982). Scene hippocampal-prefrontal synchrony. principle:aroughguidetothebrain? 204–220. perception: detecting and judging Curr.Opin.Neurobiol.21,467–474. Trends Cogn. Sci. (Regul. Ed.) 13, Lamme,V.A.F.,Zipser,K.,andSpekrei- objectsundergoingrelationalviola- Costello, P., Jiang, Y., Baartman, B., 293–301. jse,H.(1998).Figure-groundactiv- tions.Cogn.Psychol.14,143–177. McGlennen,K.,andHe,S.(2009). Friston,K.J.,andKiebel,S.(2009).Pre- ityinprimaryvisualcortexissup- Biederman,I.,Rabinowitz,J.C.,Glass, Semanticandsubwordprimingdur- dictivecodingunderthefree-energy pressed by anesthesia. Proc. Natl. A.L.,andStacy,E.W.(1974).On ing binocular suppression. Con- principle.Philos.Trans.R.Soc.Lond. Acad.Sci.U.S.A.95,3263–3268. the information extracted from a scious.Cogn.18,375–382. BBiol.Sci.364,1211–1121. Lamme,V.A.F.,Zipser,K.,andSpekrei- glanceatascene.J.Exp.Psychol.103, Davenport, J. L., and Potter, M. C. Gamond,L.,George,N.,Lemaréchal,J., jse, H. (2002). Masking interrupts 597–600. (2004).Sceneconsistencyinobject Hugueville,L.,Adam,C.,andTallon- figure-groundsignalsinV1.J.Cogn. Blake,R.,andLogothetis,N.K.(2002). andbackgroundperception.Psychol. Baudry,C.(2011).Earlyinfluenceof Neurosci.14,1044–1053. Visualcompetition.Nat.Rev.Neu- Sci.15,559–564. priorexperienceonfaceperception. Leopold, D. A., and Logothetis, N. rosci.3,13–21. Dehaene,S.,andChangeux,J.(2011). Neuroimage54,1415–1426. K.(1999).Multistablephenomena: Brewster,D.(1826).Ontheopticalillu- Experimental and theoretical Goolkasian, P., and Woodberry, C. changingviewsinperception.Trends sion of the conversion of cameos approachestoconsciousprocessing. (2010). Priming effects with Cogn.Sci.(Regul.Ed.)3,254–264. intointaglios,andofintagliosinto Neuron70,200–227. ambiguous figures. Atten. Percept. Livingstone,M.,andHubel,D.(1988). cameos, with an account of other den Ouden, H. E. M., Daunizeau, J., Psychophys.72,168–178. Segregation of form, color, move- analogousphenomena.Edinb.J.Sci. Roiser,J.,Friston,K.J.,andStephan, Gorlin,S.,Meng,M.,Sharma,J.,Sug- ment, and depth: anatomy, physi- 4,99–108. K.E.(2010).Striatalpredictionerror ihara, H., Sur, M., and Sinha, P. ology,andperception.Science 240, Brown,T. I.,Ross,R. S.,Keller,J. B., modulatescorticalcoupling.J.Neu- (2012). Imaging prior information 740–749. Hasselmo, M. E., and Stern, C. E. rosci.30,3210–3219. in the brain. Proc. Natl. Acad. Sci. MacEvoy,S.P.,andEpstein,R.A.(2011). (2010).WhichwaywasIgoing?Con- Denison, R. N., Piazza, E. A., and U.S.A.109,1935–7940. Constructing scenes from objects textualretrievalsupportsthedisam- Silver, M. A. (2011). Predictive Grill-Spector, K., Kourtzi, Z., and inhumanoccipitotemporalcortex. biguation of well learned overlap- context influences perceptual Kanwisher, N. (2001). The lateral Nat.Neurosci.14,1323–1329. pingnavigationalroutes.J.Neurosci. selection during binocular rivalry. occipital complex and its role in Malach,R.,Reppas,J.B.,Benson,R.R., 30,7414–7422. Front. Hum. Neurosci. 5:166. object recognition. Vision Res. 41, Kwong, K. K., Jiang, H., Kennedy, Buckley,M.J.,andGaffan,D.(1998). doi:10.3389/fnhum.2011.00166 1409–1422. W.A.,etal.(1995).Objectedrelated Perirhinal cortex ablation impairs Dux,P.E.,Visser,T.A.W.,Goodhew,S. Gronau, N., Neta, M., and Bar, M. activityrevealedbyfunctionalmag- visualobjectidentification.J.Neu- C.,andLipp,O.V.(2010).Delayed (2008).Integratedcontextualrepre- neticresonanceimaginginhuman rosci.18,2268–2275. reentrantprocessingimpairsvisual sentationforobjects’identitiesand occipitalcortex.Proc.Natl.Acad.Sci. Bugelski, B. R., and Alampay, D. A. awareness: an object substitution theirlocations.J.Cogn.Neurosci.20, U.S.A.92,8135–8139. (1961). The role of frequency in masking study. Psychol. Sci. 21, 371–388. Maunsell, J. H. R., Nealey, T. A., and developing perceptual sets. Can. J. 1242–1247. Hohwy,J. (2012).Attention and con- DePriest, D. D. (1990). Magnocel- Psychol.15,205–211. Eger,E.,Henson,R.N.,Driver,J.,and sciousperceptioninthehypothesis lular and parvocellular contribu- Bullier, J., and Nowak, L. G. (1995). Dolan,R.J.(2007).Mechanismsof testing brain. Front. Psychol. 3:96. tions to responses in the middle Parallelversusserialprocessing:new top-downfacilitationinperception doi:10.3389/fpsyg.2012.00096 temporal visual area (MT) of the vistas on the distributed organiza- of visualobjectsstudiedbyFMRI. Hohwy, J., Roepstorff, A., and Fris- macaque monkey. J. Neurosci. 10, tionofthevisualsystem.Curr.Opin. Cereb.Cortex17,2123–2133. ton,K.J.(2008).Predictivecoding 3323–3334. Neurobiol.5,497–503. Egner,T.,Monti,J.M.,andSummer- explainsbinocularrivalry:anepis- Melloni,L.,Schwiedrzik,C.M.,Müller, Cavada, C., Compañy, T., Tejedor, J., field, C. (2010). Expectation and temological review. Cognition 108, N., Rodriguez, E., and Singer, W. Cruz-Rizzolo, R. J., and Reinoso- surprise determine neural popula- 687–701. (2011). Expectations change the Suárez, F. (2000). The anatomical tionresponsesintheventralvisual Hsieh,P.J.,Vul,E.,andKanwisher,N. signatures and timing of electro- connectionsofthemacaquemonkey stream.J.Neurosci.30,16601–16608. (2010).Recognitionaltersthespatial physiological correlates of percep- orbitofrontalcortex.Areview.Cereb. Esterman,M.,andYantis,S.(2010).Per- patternofFMRIactivationinearly tual awareness. J. Neurosci. 31, Cortex10,220–242. ceptualexpectationevokescategory- retinotopic cortex. J. Neurophysiol. 1386–1396. Chen,C.,Lakatos,P.,Shah,A.S.,Mehta, selectivecorticalactivity.Cereb.Cor- 103,1501–1507. Merigan, W. H., and Maunsell, J. H. A. D., Givre, S. J., Javitt, D. C., tex20,1245–1253. Kaplan, I. T., and Metlay, W. (1964). R.(1993).Howparallelarethepri- et al. (2007). Functional anatomy Fahle, M. (1982). Binocular rivalry: Lightintensityandbinocularrivalry. mate visual pathways? Annu. Rev. and interaction of fast and slow suppressiondependsonorientation J.Exp.Psychol.67,22–26. Neurosci.16,369–402. visual pathways in macaque mon- andspatialfrequency.VisionRes.22, Kim, R., Seitz, A., Feenstra, H., and Meyer,K.(2012).Anotherremembered keys.Cereb.Cortex17,1561–1569. 787–800. Shams,L. (2009). Testing assump- present.Science335,415–416. Cheng,A.,Eysel,U.T.,andVidyasagar, Fahrenfort, J. J., Scholte, H. S., and tionsofstatisticallearning:isitlong- Mumford,D.(1992).Onthecomputa- T.R.(2004).Theroleofthemag- Lame,V.A.F.(2007).Maskingdis- term and implicit? Neurosci. Lett. tionalarchitectureoftheneocortex. nocellularpathwayinserialdeploy- ruptsreentrantprocessinginhuman 461,145–149. Biol.Cybern.251,241–251. ment of visual attention. Eur. J. visualcortex.J.Cogn.Neurosci.30, Kveraga, K., Boshyan, J., and Bar, M. Murray,E.A.,andMishkin,M.(1998). Neurosci.20,2188–2192. 7414–7422. (2007). Magnocellular projections Object recognition and location Chopin,A.,andMamassian,P.(2012). Felleman,D. J.,andVan Essen,D. C. asthetriggeroftop-downfacilita- memory in monkeys with exci- Predictivepropertiesofvisualadap- (1991).Distributedhierarchicalpro- tioninrecognition.J.Neurosci.27, totoxic lesions of the amygdala tation.Curr.Biol.22,622–626. cessingintheprimatecortex.Cereb. 13232–13240. and hippocampus. J. Neurosci. 18, Chun, M. M., and Jiang, Y. (1998). Cortex1,1–47. Kveraga,K.,Ghuman,A.S.,Kassam,K. 6568–6582. Contextualcueing:implicitlearning Friedman,A.(1979).Framingpictures: S.,Aminoff,E.,Hämäläinen,M.S., Nyberg,L.,Tulving,E.,Habib,R.,Nils- andmemoryofvisualcontextguides the role of knowledge in automa- Chaumon, M., et al. (2011). Early son,L. G.,Kapur,S.,Houle,S.,et spatialattention.Cogn.Psychol.36, tizedencodingandmemoryforgist. onsetof neuralsynchronizationin al. (1995). Functional brain maps 28–71. J.Exp.Psychol.Gen.108,316–355. thecontextualassociationsnetwork. of retrieval mode and recovery of Chun,M.M.,andJiang,Y.(1999).Top- Friston, K. J. (2005). A theory of Proc. Natl. Acad. Sci. U.S.A. 108, episodic information. Neuroreport downattentionalguidancebasedon cortical responses. Philos. Trans. 3389–3394. 7,249–252. www.frontiersin.org January2013|Volume3|Article620|7 Panichelloetal. Predictionsandconsciousperception Oliva,A.,andTorralba,A.(2007).The organizationoffragmentedfigures. Summerfield,C.,andEgner,T.(2009). Webster, M. J., Bachevalier, J., and role of context in object recogni- Perception14,49–52. Expectation(andattention)invisual Ungerleider,L.G.(1994).Connec- tion.TrendsCogn.Sci.(Regul.Ed.) Ro,T.,Breitmeyer,B.,Burton,P.,Sing- cognition.TrendsCogn.Sci.(Regul. tionsofinferiortemporalareasTEO 11,520–527. hal,N.S.,andLane,D.(2003).Feed- Ed.)13,403–409. and TE with parietal and frontal Ooi,T.L.,andHe,Z.J.(1999).Binocular backcontributionstovisualaware- Summerfield, C., Egner, T., Greene, cortexinmacaquemonkeys.Cereb. rivalryandvisualawareness:therole nessinhumanoccipitalcortex.Curr. M., Koechlin, E., Mangels, J., Cortex4,470–483. ofattention.Perception28,551–574. Biol.13,1038–1041. and Hirsch, J. (2006). Predictive Wyart,V.,Nobre,A.C.,andSummer- Palmer,E.(1975).Theeffectofcontex- Rosch,E.,Mervis,C. B.,Gray,W. D., codes for forthcoming perception field, C. (2012). Dissociable prior tualscenesontheidentificationof Johnson,D.M.,andBoyes-Braem,P. in the frontal cortex. Science 314, influencesofsignalprobabilityand objects.Mem.Cognit.3,519–526. (1976).Basicobjectsinnaturalcate- 1311–1314. relevanceonvisualcontrastsensitiv- Pascual-Leone, A., and Walsh, V. gories.Cogn.Psychol.439,382–439. Sun,J.,andPerona,P.(1998).Whereis ity.Proc.Natl.Acad.Sci.U.S.A.109, (2001). Fast backprojections from Sachs, O.,Weis, S., Zellagui, N., Sass, thesun?Nat.Neurosci.1,183–184. 3593–3598. the motion to the primary visual K., Huber, W., Zvyagintsev, M., et Supèr,H.,Spekreijse,H.,andLamme, Yeo,B.T.T.,Krienen,F.M.,Sepulcre, areanecessaryforvisualawareness. al. (2011). How different types of V.A.F.(2001).Twodistinctmodes J., Sabuncu, M. R., Lashkari, Science292,510–512. conceptualrelationsmodulatebrain of sensory processing observed in D., Hollinshead, M., et al. Pearson, J., Clifford, C., and Tong, F. activationduringsemanticpriming. monkeyprimaryvisualcortex(V1). (2011). The organization of (2008). The functional impact of J.Cogn.Neurosci.23,1263–1273. Nat.Neurosci.4,304–310. the human cerebral cortex esti- mental imagery on conscious per- Schyns,P.G.,andOliva,A.(1994).From Szpunar, K. K., Chan, J. C. K., mated by intrinsic functional ception.Curr.Biol.18,982–986. blobs to boundaries: evidence for and McDermott, K. B. (2009). connectivity. J. Neurophysiol. 106, Peters, J., Daum, I., Gizewski, E., time- and spatial-scale-dependent Contextual processing in episodic 1125–1165. Forsting,M.,andSuchan,B.(2009). scene recognition. Psychol. Sci. 5, future thought. Cereb. Cortex 19, Associationevokedduringmemory 195–201. 1539–1548. encoding recruit the context net- Shapley, R. (1990). Visual sensi- Thorpe, S., Fize, D., and Marlot, C. Conflict of Interest Statement: The work.Hippocampus19,141–151. tivity and parallel retinocortical (1996).Speedof processinginthe authors declare that the research was Piefke, M., Weiss, P. H., Zilles, K., channels. Annu. Rev. Psychol. 41, human visual system. Nature 381, conductedintheabsenceofanycom- Markowitsch,H.J.,andFink,G.R. 635–658. 520–522. mercial or financial relationships that (2003).Differentialremotenessand Sotiropoulos,G.,Seitz,A.R.,andSer- Tononi,G.,andEdelman,G.E.(1998). couldbeconstruedasapotentialcon- emotionaltonemodulatetheneural iès,P.(2011).Changingexpectations ConsciousnessandComplexity.Sci- flictofinterest. correlatesofautobiographicalmem- aboutspeedaltersperceivedmotion ence282,1846–1851. ory.Brain126,650–668. direction.Curr.Biol.21,883–884. Tsuchiya,N.,andKoch,C.(2005).Con- Received:02August2012;paperpend- Rao,R.P.,andBallard,D.H.(1999).Pre- Squire,L.R.,Stark,C.E.L.,andClark,R. tinuous flash suppression reduces ingpublished:31August2012;accepted: dictivecodinginthevisualcortex: E.(2004).Themedialtemporallobe. negativeafterimages.Nat.Neurosci. 28December2012;publishedonline:21 afunctionalinterpretationofsome Annu.Rev.Neurosci.27,279–306. 8,1096–1101. January2013. extra-classicalreceptive-fieldeffects. Steinman, B. A., and Steinman, S. B. Tsukiura, T., and Cabeza, R. (2008). Citation: Panichello MF, Cheung OS Nat.Neurosci.2,79–87. (1997). Transient visual attention Orbitofrontal and hippocampal and Bar M (2013) Predictive feed- Rauchs, G., Orban, P., Balteau, E., isdominatedbythemagnocellular contributionstomemoryforface- back and conscious visual experi- Schmidt,C.,Degueldre,C.,Luxen, stream.VisionRes.37,17–23. name associations: the rewarding ence. Front. Psychology 3:620. doi: A.,etal.(2008).Partiallysegregated Sterzer, P., Frith, C., and Petrovic, P. powerofasmile.Neuropsychologia 10.3389/fpsyg.2012.00620 neuralnetworksforspatialandcon- (2008). Believing is seeing: expec- 46,2310–2319. ThisarticlewassubmittedtoFrontiersin textual memory in virtual naviga- tationsaltervisualawareness.Curr. Turk-Browne, N. B., Scholl, B. J., PerceptionScience,aspecialtyofFrontiers tion.Hippocampus18,503–518. Biol.18,697–698. Johnson, M. K., and Chun, M. inPsychology. Rempel-Clower, N. L., and Barbas, Sterzer,P.,Kleinschmidt,A.,andRees, M. (2010). Implicit perceptual Copyright © 2013 Panichello, Cheung H. (2000). The laminar pattern of G.(2009).Theneuralbasesofmul- anticipation triggered by statis- and Bar. This is an open-access arti- connectionsbetweenprefrontaland tistableperception.TrendsCogn.Sci. tical learning. J. Neurosci. 30, cle distributed under the terms of the anterior temporal cortices in the (Regul.Ed.)13,310–318. 11177–11187. CreativeCommonsAttributionLicense, Rhesus monkey is related to cor- Stocker, A. A., and Simoncelli, C. P. Ullman, S. (1995). Sequence seeking which permits use, distribution and ticalstructureandfunction.Cereb. (2006). Noise characteristics and and counter streams: a computa- reproduction in other forums, provided Cortex10,851–865. priorexpectationsinhumanvisual tionalmodelforbidirectionalinfor- theoriginalauthorsandsourcearecred- Reynolds, R. I. (1985). The role speedperception.Nat.Neurosci.9, mation flow in the visual cortex. itedandsubjecttoanycopyrightnotices of object-hypothesis in the 578–585. Cereb.Cortex5,1–11. concerninganythird-partygraphicsetc. FrontiersinPsychology|PerceptionScience January2013|Volume3|Article620|8