ebook img

Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties

Astronomy&Astrophysicsmanuscriptno.8321astroph (cid:13)c ESO2008 February2,2008 ⋆ Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties. 8 0 S.Hekker1,2,I.A.G.Snellen1,C.Aerts3,4,A.Quirrenbach1,5,S.Reffert5,andD.S.Mitchell6 0 2 1 LeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,TheNetherlands n 2 RoyalObservatoryofBelgium,Ringlaan3,1180Brussels,Belgium a 3 InstituutvoorSterrenkunde,KatholiekeUniversiteitLeuven,Celestijnenlaan200D,3001Leuven,Belgium J 4 DepartmentofAstrophysics,UniversityofNijmegen,P.O.Box9010,6500GLNijmegen,TheNetherlands 4 5 ZAH,LandessternwarteHeidelberg,Ko¨nigstuhl12,D-69117Heidelberg,Germany 6 CaliforniaPolytechnicStateUniversity,SanLuisObispo,CA93407,USA ] h p Received¡date¿;accepted¡date¿ - o r ABSTRACT t s a Context.Since1999, wehavebeenconducting aradialvelocitysurveyof 179KgiantsusingtheCoude´ AuxiliaryTelescopeatUCO/Lick [ observatory.Atpresent∼20−100measurementshavebeencollectedperstarwithaprecisionof5to8ms−1.Ofthestarsmonitored,145(80%) showradialvelocity(RV)variationsatalevel>20ms−1,ofwhich43exhibitsignificantperiodicities. 1 v Aims.Ouraimistoinvestigatepossiblemechanism(s)thatcausetheseobservedRVvariations.Weintendtotestwhetherthesevariationsare 1 intrinsicinnature,orpossiblyinducedbycompanions,orboth.Inaddition,weaimtocharacterisetheparametersofthesecompanions. 4 Methods.ArelationbetweenloggandtheamplitudeoftheRVvariationsisinvestigatedforallstarsinthesample.Furthermore,thehypothesis 7 that all periodic RV variations are caused by companions is investigated by comparing their inferred orbital statistics with the statistics of 0 companionsaroundmainsequenceF,G,andKdwarfs. 1. Results.AstrongrelationisfoundbetweentheamplitudeoftheRVvariationsandlogginKgiantstars,assuggestedearlierbyHatzes& 0 Cochran(1998).However,mostofthestarsexhibitingperiodicvariationsarelocatedabovethisrelation.TheseRVvariationscanbesplitina 8 periodiccomponentwhichisnotcorrelatedwithloggandarandomresidualpartwhichdoescorrelatewithlogg.Comparedtomain-sequence 0 dwarfstars,KgiantsfrequentlyexhibitperiodicRVvariations.InterpretingtheseRVvariationsasbeingcausedbycompanions, theorbital : parametersaredifferentfromthecompanionsorbitingdwarfs. v Conclusions.Intrinsic mechanisms play an important role in producing RV variations in K giants stars, as suggested by their dependence i X on logg. However, it appears that periodic RV variations areadditionalto these intrinsic variations, consistent with them being caused by r companions. If indeed the majority of the periodic RV variations in K giants is interpreted as due to substellar companions, then massive a planetsaresignificantlymorecommonaroundKgiantsthanaroundF,G,Kmain-sequencestars. Keywords.stars:variables–techniques:radialvelocities 1. Introduction stars, but detections around an A star (Gallandetal. 2006) and several subgiants (Johnsonetal. (2006), Johnsonetal. For more than a decade, radialvelocity observationswith ac- (2007)) have also been reported recently. Moreover, 10 curacies of order ms−1 have been within reach (see for in- giant stars were reported to have sub-stellar companions stanceMarcy&Butler(2000)andQuelozetal.(2001)).Even (ι Draconis (K2III) Frinketal. (2002), HD104985 (G9III) accuracies of less than 1 ms−1 (Pepeetal. 2003) are possi- Satoetal. (2003), HD47526 (K1III) Setiawanetal. (2003), ble now. With these observations, more than 200 sub-stellar HD13189 (K2II-III) Hatzesetal. (2005), HD11977 (G5III) companionshavebeendiscoveredbymeasuringthereflexmo- Setiawanetal. (2005), Pollux (K0III) Hatzesetal. (2006), tions of their parent stars. Most of these sub-stellar compan- Reffertetal. (2006), 4UMa (K1III) Do¨llingeretal. (2007), ions have been detected around F, G and K main sequence NGC2423No3andNGC4349No127Lovis&Mayor(2007), Sendoffprintrequeststo:S.Hekker, email:[email protected] ⋆ BasedondataobtainedatUCO/LickObservatory,USA 2 S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. and recently HD17092 (K0III) Niedzielskietal. (2007))1. In addition to searches for extra-solar companions, radial veloc- ity observations prove to be very useful for detecting solar- likeoscillationsinstarswithturbulentatmospheres,suchasthe dwarfαCenA(e.g.Beddingetal.2006),thesubgiantProcyon (e.g.Eggenbergeretal.2004:Martic´etal.2004)andthegiant ǫ Ophiuchi(e.g.DeRidderetal.2006). With techniques for accurate radial velocity observations at hand, a survey was started in 1999 to verify whether K giants are stable enough to be used as astrometric refer- encestarsforSIM/PlanetQuest(SpaceInterferometryMission) (Frinketal.2001).Thissurveycontains179starsandusesthe Coude´ Auxiliary Telescope (CAT) at University of California Observatories / Lick Observatory, in conjunction with the HamiltonEchelleSpectrograph.Thesurveyhasrecentlybeen expandedtoabout380giantsandisstillongoing.Fortheanal- ysis described in the present paper only data from the initial 179starsareused. From this survey, companions have been announced for ι Draconis (Frinketal. 2002) and Pollux (Reffertetal. 2006). Starswithradialvelocityvariationsoflessthan20ms−1 have beenpresentedasstablestarsbyHekkeretal.(2006).Inaddi- tion, some binaries discoveredwith this survey,as well as an extensive overview of the sample, will be presented in forth- comingpapers. Fig.1. Radial velocity variations as a function of phase for a As almost all of the stars show significant radial velocity star(HIP34693)withahighlysignificantperiod(top),withits variations,weinvestigateherewhichmechanismcausesthese periodogram(bottom).Thedashedlineintheperiodogramin- variations.Non-periodicradialvelocityvariations,oftheorder dicatesthesignificancethreshold. oftheinvestigatedtimescales,aremostlikelycausedbysome intrinsicmechanism,whiletheperiodicvariabilitycanalsobe causedbycompanions.We also investigatethe characteristics ofthesecompanions. about80−100atλ = 5500Å, yieldinga radialvelocitypre- InSect.2,theradialvelocityobservationsaredescribedin cision of 5 − 8 ms−1. As we are looking for radial velocity detail.In Sect. 3,the relationbetweenthe observedradialve- variationsoforder10to100ms−1,thisisadequateandhence locityamplitudeandsurfacegravityisinvestigated.InSect.4, noattempthasbeenmadetoreachthe3ms−1 accuracywhich weexplorethehypothesisthatallperiodicradialvelocityvari- isinprinciplepossiblewiththissetup(Butleretal.1996).For ationsare causedbysub-stellarcompanions,andwe compare thedeterminationoftheradialvelocitiesthepipelinedescribed the inferred orbital parameters with those obtained for sub- by Butleretal. (1996) is used. In this pipeline, a template io- stellar companionsorbiting main sequence stars. Our conclu- dine spectrum and a template spectrum of the target star ob- sionsarepresentedinSect.5. tainedwithoutaniodinecellinthelightpathareusedtomodel thestellarobservationswithasuperposediodinespectrum.The Dopplershiftisafreeparameterinthismodel.Notethatwith 2. Radialvelocityvariations thismethodtheabsoluteradialvelocityisnotmeasured,butthe radialvelocityrelativetothestellartemplateisobtained. Theinitial179starsselectedfortheradialvelocitysurveyare All 179 stars are subjected to a period search. The peri- usedinthepresentwork.Thesestarshavebeenselectedfrom odicity of the radial velocity variations is determined first of theHipparcoscatalogue(Perryman&ESA1997),basedonthe all from a classical Lomb-Scargle(LS) periodogram(Scargle criteriadescribedbyFrinketal.(2001).Theselectedstarsare 1982).Thesignificancethresholdissetto6σ,wherethenoise all brighter than 6 mag, are presumably single and have pho- level is determined from the average power of the residual tometric variations < 0.06 mag in V. The survey started in Scargle periodogram for frequencies between 0 and 0.03 cy- 1999atLickObservatoryusingtheCoude´AuxiliaryTelescope clesperday(c/d)(0.35µHz)andafrequencystepof0.00001 (CAT)inconjunctionwiththeHamiltonEchelleSpectrograph c/d(0.12·10−3µHz).Weadoptedtheconventionalmethodof (R=60000). The system with an iodine cell in the light path iterativesinewavefitting (‘prewhitening’)to searchforsubse- hasbeendescribedbyMarcy&Butler(1992)andValentietal. quentfrequencies(Kuschnigetal. 1997). In Figs 1 and2, the (1995). With integration times of up to thirty minutes for the radial velocity variation as a function of phase is shown for fainteststars(m = 6 mag)we reacha signalto noiseratio of v twostars.TheperiodofthestarinFig.1ishighlysignificant, 1 For updated information on sub-stellar companions, see while the one in Fig. 2 is close to the significance threshold. http://exoplanet.euandhttp://exoplanets.org. Periodogramsareshowninthebottompanelsofthesefigures. S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. 3 Table1.Singlestarswithsignificantfrequencies. star frequency period frequency period µHz days µHz days HIP3419 0.0638 181 0.1197 97 HIP7607 0.0216 536 HIP7884 0.0184 629 HIP13905 0.0223 519 HIP16335 0.0197 588 HIP19011 0.0252 459 HIP21421 0.0203 570 0.0448 237 HIP23015 0.0151 767 0.0073 1586 HIP23123 0.0135 857 HIP31592 0.0144 804 HIP33160 0.0226 512 HIP34693 0.0380 305 HIP36616 0.0033 3507 0.0389 298 HIP37826 0.0194 597 HIP38253 0.0171 677 HIP39177 0.0133 870 HIP40526 0.0172 673 HIP46390 0.0233 497 HIP47959 0.0187 619 HIP53229 0.0022 5261 HIP53261 0.0149 777 HIP57399 0.0196 591 HIP64823 0.0021 5512 Fig.2. Radial velocity variations as a function of phase for a HIP69673 0.0382 303 0.0187 619 star(HIP7607)withaperiodclosetothesignificancethreshold HIP73133 0.0014 8267 0.0157 737 (top), with its periodogram (bottom). The dashed line in the HIP73620 0.0226 512 periodogramindicatesthesignificancethreshold. HIP74732 0.0233 497 HIP75458 0.0226 512 HIP79540 0.0203 570 AsproperlyemphasizedbyCummingetal.(1999),suchaclas- HIP80693 0.0022 5261 0.0198 585 sicalperiodsearchmaynotbeappropriateforunevenlyspaced HIP84671 0.0251 461 sparsedata,eventhoughwesetthesignificancelevelatacon- HIP85139 0.2895 40 servativelyhighlevel.Inordertocheckthis,wehavedonean HIP85355 0.0258 449 0.0056 2067 additionalLSanalysisafterprewhiteningtheoriginaldatabya HIP85693 0.0175 661 linearpolynomial.Thisledalmostalwaystothesamefrequen- HIP87808 0.0153 757 cies.Weonlyacceptedafrequencywhenitwasfoundtomeet HIP88048 0.0218 531 0.0029 3991 the significance criterion for both these analyses. The signifi- HIP91117 0.0303 382 cantfrequenciesarelistedinTable1. HIP109023 0.0199 582 HIP109492 0.0217 533 HIP109602 0.0130 890 3. Radialvelocityamplitude-surfacegravity HIP109754 0.0189 612 relation HIP113562 0.0401 289 0.0472 245 HIP114855 0.0639 181 Hatzes&Cochran(1998)alreadyinvestigatedtheoriginofthe observedradialvelocitiesinKgiantstars.Althoughtheirsam- ple contained only 9 stars, they suggested that the amplitude and Kurucz model atmospheres which include overshooting oftheradialvelocityincreaseswithdecreasingsurfacegravity (Castellietal.1997).Theseauthorsestimatedtheerroronlogg (logg).Inlowersurfacegravityittakeslongertodecreasethe tobe0.22dexfromthescatterfoundinacomparisonwithlit- velocityofamovingparcelwhichresultsinlargeramplitudes eraturevalues.Adetaileddescriptionofthestellarparameters andtherelationsuggestedbyHatzes&Cochran(1998)would forindividualstarsandacomparisonwithliteraturevaluesare thereforebeevidenceforpulsationsorrotationalmodulationas availableinHekker&Mele´ndez(2007)andisthereforeomit- themechanismfortheselongperiodradialvelocityvariations. tedhere. Forthepresentsample,loggvaluesweredeterminedspec- In Fig. 3, we show half of the peak-to-peak value of the troscopicallybyHekker&Mele´ndez(2007),by imposingex- observedradialvelocityvariationsasafunctionofloggforK citation and ionisation equilibrium of iron lines through stel- giantsinoursample.Acleartrendisvisiblebetweenincreasing lar models. The equivalent width of about two dozen care- radialvelocityvariationsin single stars, anddecreasinglogg, fully selected iron lines were used for a spectroscopic LTE whichprovidesastrongindicationthat,atleastforalargefrac- analysis based on the 2002version of MOOG (Sneden 1973) tion of stars in our sample, the observed radial velocity vari- 4 S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. Fig.3.Half ofthe peak-to-peakvariationof theradialvelocityas a functionofsurfacegravity(logg).Theblue ◦indicatethe singlestarswithperiodicradialvelocityvariations(seetextforperiodicitycriteria),thered(cid:3)indicatesinglestarswithrandom radialvelocityvariations,and stellar binaries(companionmass > 100M ) are indicatedwith black ⋄ symbols.(Coloursare Jup only visible in the online version of the paper.) The solid line is the best fit through the random single stars, the dotted line indicates the 1σ interval around the best fit and the dashed line indicates the 3.5σ interval. Single stars with a higher radial velocityamplitudethanexpectedbasedontheirloggvalue(morethan3.5σabovethebestfit)areindicatedbyarrows.Sixof the8starswithperiodicradialvelocityvariationsandlogg < 1.6areclassified brightgiantsorsupergiants(Perryman&ESA 1997). ations are induced by a mechanism intrinsic to the star. This fittedveryaccuratelywithaKeplerianorbitofasinglenearly trendispresentforstarswithrandomaswellasstarswithperi- sinusoidalsub-stellarcompanion. odicradialvelocityvariations.Also,nearlyallstarswithperi- Inordertoinvestigatethesimultaneousoccurrenceofsub- odicradialvelocityvariationsandlogg≥1.6arelocatedabove stellarcompanionsandoscillationsingiants,thebestKeplerian the fitin Fig.3. Sevensingle starshavea higherradialveloc- fitsaresubtractedfromtheobservedradialvelocityvariations ityvariationthanexpectedbasedontheirloggvalue,i.e.they ofboththebinariesandthesinglestarswithsignificantperiodic are situated more than 3.5σ abovethe best fit for the relation radialvelocityvariations.Thehalfpeak-to-peakvaluesofthese obtainedforsinglestars.Thesestarsareindicatedwitharrows residualsareplottedasa functionofsurfacegravityinFig.4, inFig.3.TheradialvelocityvariationobservedforHIP53229 also showingthe linear fitthroughthe non-periodicstars, and maybeduetoastellarcompanioninawideorbit,withaperiod theamplitudesofthesubtractedperiodicsignals.Therearesev- much longerthan the observationtime span. Due to this long eralinterestingpointstomakeaboutthisgraph.Firstly,almost periodthecompanionmass,and,therefore,the(sub-)stellarna- allperiodicstarsshowlargerradialvelocityvariationsthanpre- ture,is still veryuncertain.HIP33152is classified asa super- dictedbytherelationfoundfornon-periodicstars,butwhenthe giant. The observed radial velocity variations for HIP80693, periodicities are removed, their residual radial velocity varia- HIP36616,andHIP88048canbefittedwithtwoKeplerianor- tions follow the same relation as found for the non-periodic bits, while HIP75458 can be explained by an eccentric sub- stars. This could be interpreted as evidence for both intrinsic stellar companion (Frinketal. 2002) and an additional linear (non-periodicradialvelocityvariation)andextrinsic(periodic trend,indicatingacompanioninawideorbit.HIP34693canbe variations)mechanismsplayingaroleinthesestars.Secondly, S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. 5 Fig.4. Top: Half of the peak-to-peakvariation of the radial velocity as a function of surface gravity (logg), as in Fig. 3, but showingonlythosestarswithperiodicradialvelocityvariations(blue◦)andstellarbinaries(black⋄).Theblue+andblack× symbolsindicatetheamplitudeoftheradialvelocityvariationsforthesestarsaftersubtractionoftheKeplerianfits.(Coloursare onlyvisibleinthe onlineversionofthepaper.)Thesolid lineindicatesthelinearfitthroughthe starswith non-periodicradial velocityvariations(fromFig.3).Bottom:AmplitudesofthesubtractedKeplerianfitsasafunctionoflogg. thereisnocorrelationbetweentheamplitudeofthesubtracted 4. CompanionInterpretation periodic signal and logg, which providesadditional evidence From the analysis of the correlation between radial velocity forthepresenceofcompanions.Thirdly,almostall(8outof9) amplitude and surface gravity we have evidence for the pres- stars with logg ≤ 1.6 exhibit periodic variations. If these in- ence of both intrinsic variabilityand companionsin at least a deedhaveanextrinsicmechanism,itwouldmeanthat∼ 90% fractionoftheKgiantstarswithperiodicradialvelocityvaria- of these stars have sub-stellar companions.However,froman tions.Inordertostudythecharacteristicsofthesecompanions, astrophysicalpoint of view, stars with such low surface grav- we take the hypothesisthat the periodic radial velocity varia- ities are alreadyvery high on the giant branchor even on the tionsdetectedin43ofourKgiantstars,excludingbinaries,are asymptoticgiantbranch.Attheselowgravities,starscannotbe caused by sub-stellar companions. Under this hypothesis, we constantanymore,astheouterlayersaresodilutedthatinsta- investigatethestatisticalpropertiesoftheorbitalparametersof bilities occur easily, either periodic or random. Stated differ- thesampleandcomparethesewiththestatisticalpropertiesof ently,thesestarsareveryclosetothesemi-regulars,whichare companionsorbitingF,GandKdwarfs. ontheir way to becomeMira variables.Hence,these periodic According to our analysis, 55 stars in the sample would variationscouldwellbeintrinsic. have a single companion, and 11 stars multiple companions. 6 S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. Twenty-three (22 single and 1 in a multiple system) of these companions have msini larger than 100 M and should be Jup interpretedas stellar binaries.By advancingthe multiple sub- stellarsystemsforwardintimeviaaRunga-Kuttaintegration, we investigated the stability of the systems, taking into ac- countthemutualinteractionsofthecompanions.Withthe or- bitalparametersthatminimiseχ2takenatfacevalue,wefound thatmostoftheinferredsub-stellarmultiplesystemswouldbe ’likelyunstable’,with a changein semi-majoraxis> 1%and < 10%,or’unstable’withachangeinsemi-majoraxis> 10% onatimescaleof100yearsduetocompanion-companionin- teraction. However, the inferred stability depends on the starting epoch of the computations, as well as on the orbital parame- ters,whichmightchangewithanincreasingnumberofobser- vations. Furthermore, there is no guarantee that the obtained Fig.5.Ahistogramofmsiniofinferredcompanionmassesor- χ2 minimumis a globalminimum.Therefore,stars with mul- biting K giants in our sample. The dashed line indicates the tiple inferred sub-stellar companions that seem to be unsta- rise of planet masses M−1.05 from 10 M down to Saturn Jup ble, might also have stable solutions. One could also use the massesforsub-stellarcompanionsaroundmainsequencestars equationsfordynamicalstabilitydescribedbyGladman(1993) (Marcyetal. 2005), normalised to the number of stars in our and Marcyetal. (2001). Gladman (1993) also notes that the sample. Hill stability criteria for companions in initially eccentric or- bitsmaynotbemet,butthatthesystemsmaystillbefoundto beempiricallyquitestableforalongperiodoftime.Inorderto drawa firmconclusiononthe stability ofa particularsystem, amorethoroughinvestigationisneeded,aswellasdatawitha longertimebase,whichisbeyondthescopeofthispaper. For all stars with periodic radial velocity variations, we checked the Hipparcos (Perryman&ESA 1997) photometry. We checkedperiodogramsfor significantfrequenciesclose to the obtainedradialvelocity period,and plotted the photomet- ric valuesphased with the radialvelocityperiod. None of the starsshowphotometricvariationsrelatedtotheobservedradial velocityvariations. The massdistributionof ourK giantsampleis notknown very well. The stellar masses are typically between 1 and 4 M⊙. Hence most of their main sequence progenitors should have been of A or F spectralclass. The distribution of orbital Fig.6.Zoomin onthelowendofthe companionmassdistri- parameters of sub-stellar companions orbiting A and F main butionofinferredsub-stellarcompanionsorbitingKgiantstars sequencestarsisstillunknown.Thecoreaccretionmodelpre- inoursurvey,shownaspercentageofthetotalnumberofstars dictsmoregiantplanetsaroundmoremassivestars,sothatthe inthesample(grayhistogram).Thehatchedhistogramshows distributionoforbitalparametersofsub-stellarcompanionsor- the distribution of companionmasses orbiting main sequence bitingF,GandKmain-sequencestarsprobablycannotserveas starsasshowninFig.1ofMarcyetal.(2005),asapercentage a proxy.However,itshouldbeinstructivetocomparethetwo ofthetotalnumberofstarsintheirsample.Thecrosshatched distributions. areaaremainsequencestarswithcompanionsatasemi-major Sincethedatapresentedherespan∼ 2500days,radialve- axissmallerthan0.3AU(seeFig.7). locityvariationswithlongerperiodsareuncertain,and,there- fore, not taken into consideration. Companions with periods dwarf statistics around F, G and K main sequence stars for exceeding the observation time span are also excluded from which onlyvery few companionsare foundwith msini > 15 theF,G,andKmainsequencestarstatistics. M around more than thousand stars. This is known as the Jup brown dwarf desert and is possibly caused by migration and mergingofbrowndwarfsinaviscousdiskwithamassatleast 4.1.Massdistribution comparable to the brown dwarf mass (Armitage&Bonnell Fig. 5 shows the distribution of inferred companion masses 2002). of our K giant sample. First, notice that 30% of the inferred The dashed line in Fig. 5 indicates the rise of sub-stellar companionswouldhavemassesinthebrowndwarfregime15 companion masses M−1.05 from 10 M down to Saturn Jup M <msini<80M .Thisisinsharpcontrasttothebrown massesformainsequencestars(Marcyetal.2005),normalised Jup Jup S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. 7 Fig.7. Semi-major axis distribution of inferred K giant com- Fig.8.Perioddistributionoftheobservedradialvelocityvari- panionsinoursample(grayhistogram),shownasapercentage ations shown as a fraction of all significant periods (gray of the total number of stars in the sample. The hatched his- histogram). The period distribution of main sequence stars togram shows the distribution for F, G and K main sequence (Butleretal.2006)isshowninthehatchedhistogram,asafrac- stars as shown in Fig. 2 of Marcyetal. (2005), as a percent- tion of the total number of observed companions. The cross age ofthe totalnumberof stars in theirsample. Themain se- hatched area are main sequence stars with a semi-major axis quence stars with a companion orbiting at a semi-major axis smallerthan0.3AU(seeFig.7). smallerthan0.3AUarecross-hatched.Thesearealsoindicated inFigs6and8. 4.3.Perioddistribution In Fig. 8 the period distribution of the observed radial veloc- ity variationsisshownandcomparedwith thecompanionpe- to the number of stars in our sample. We use a two-sided riod distribution of dwarfs. The large fraction of F, G and K Kolmogorov-Smirnov test (Pressetal. 1992) (hereafter KS- dwarf companions with orbital periods shorter than 100 days test) to compare the M−1.05 fit and the mass distribution correspondstotheoneswithsemi-majoraxissmallerthanap- (msini < 80 M ) of our sample and find a probability of Jup proximately0.3AU.Theclose-inshort-periodcompanionsare 0.05% (0.002% for msini < 28 M ) that these are identi- Jup not present around K giants, while about 80% of these stars cal. This implies that inferred sub-stellar companions around with observed radial velocities have periods ranging between K giantsin oursamplehavehighermassescomparedtocom- 400and800days.AKS-testrevealsaprobabilityoflessthan panionsaroundF,GandKmainsequencestars. 0.0001%for the two distributions to be identical. The proba- Fig. 6 shows the low-mass companion distribution of our bilityremainsbelowthislevel,whenthecompanionsorbiting survey.MostKgiantcompanionswouldhaveinferredmasses mainsequencestarswithasemi-majoraxis<0.3AUareomit- between 2 and 8 MJup, while the fraction of companions or- ted. biting F, G and K dwarfs strongly decreases with increasing msini. 4.4.Eccentricitydistribution Fig. 9 shows the distribution of companion eccentricities for 4.2.Semi-majoraxisdistribution Kgiantsinoursampleandfordwarfs.Companionsofdwarfs Thedistributionofthecompanions’semi-majoraxisisshown withperiodslessthan20daysareexcluded,asthesemightbe inFig.7.Noinferredcompanionswithsemi-majoraxissmaller tidally circularised. The fraction of companion eccentricities than0.3AUarepresentintheKgiantsample,possiblydueto < 0.3forthegiantsis75%comparedto 50%forcompanions increasedstellarradiiofgiants.Thefractionofstarswithanin- orbitingF, GandKdwarfs.TheKS-testshowsthatthesedis- ferredcompanionwithasemi-majoraxisbetween1and3AU tributionsarenearlyidentical(97%). ismuchhigheramongtheKgiantscomparedtotheF,GandK dwarfs.AcomparisonbetweenthetwodistributionswithaKS- 4.5.Ironabundance test reveals a probability for the two distributions to be iden- tical of 11%. This increases to 32% when omitting the main Companion occurrence correlates strongly with the abun- sequencestarswithsemi-majoraxis< 0.3AU.Theincreasing dance of heavy elements (see for instance Gonzalez (1997), incompletenessbeyond3 AU, dueto the limited time span of Fischer&Valenti (2005) and Santosetal. (2005)), such that surveys,ispresentinbothsamplesasthesurveyscoveracom- F, G, and K dwarf stars with supersolar abundance are more parableamountoftime.Thisincompletenesscannotcausethe likely to harbour sub-stellar companions (about 50% of the significantdifferenceinthepeakbetween1and3AU. stars with 0.3 < [Fe/H] < 0.5). The increase of the fraction 8 S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. Fig.9. Distribution of eccentricities for possible companions Fig.10. Iron abundance [Fe/H] distribution of K giant stars around K giants in our sample (gray histogram) shown as a with periodicradialvelocityvariationsshownasapercentage fraction of all possible sub-stellar companions in the sample. of the total number of observed stars with iron abundance in Thehatchedhistogramistheeccentricitydistributionofcom- the same interval. The numbers above each bar on the his- panionsaroundmainsequencestars(Butleretal.2006)shown togram indicate the ratio of stars with a significant periodic as a fraction of all companions around main sequence stars. radial velocity variation to the total number of stars in each Companions with periods shorter than 20 days are excluded bin. The error bars are calculated assuming Poisson statistics fromthelattersampleasthesemightbetidallycircularised. (i.e.,the percentageof starswith periodicradialvelocitiesdi- vided by the square rootof the number of stars with periodic radialvelocities).Thedashedlineisthepowerlawderivedfor of F, G andK dwarfsharbouringcompanionswith increasing the increasing trend in the fraction of stars with companions metallicity is well fitted with a power law, yielding a prob- asafunctionofmetallicityofF,GandKmainsequencestars ability for such a star to harbour a companion to be: P = (Fischer&Valenti2005). 0.03·[(NFe/NH)/(NFe/NH)⊙]2.0(Fischer&Valenti2005). InFig.10theironabundancedistributionofstarswithpe- riodicradialvelocityvariationsisshownasapercentageofthe totalnumberofobservedstarswithironabundanceinthesame Almost all of the lowest logg stars show periodic varia- interval. The iron abundance is determined spectroscopically tions.Itmaybepossiblethatstarswithsuchlowsurfacegravity byimposingexcitationandionisationequilibriuminironlines cannotbe constantand thatin these dilute atmospheresinsta- andisdescribedbyHekker&Mele´ndez(2007).Themaximum bilities can occur very easily, and therefore may be periodic, iron abundance of a K giant star in our sample is 0.29 and, butnotextrinsic. therefore,wedonotprobethehighmetallicityregioninwhich Based on the evidence that extrinsic mechanism(s) play a F,GandKdwarfsaremostlikelytoharbouracompanion. roleforKgiantstarswithperiodicradialvelocityvariationswe ThemeanmetallicityoftheKgiantsintheentiresampleis investigated the hypothesis that this periodic signal is caused −0.12dex,whilethemeanmetallicityofthestarswithperiodic by the reflex motion of sub-stellar companionsorbiting these radial velocity variations, presented in Fig. 10, is −0.13 dex. stars.Wepresentedthecharacteristicsoftheorbitalparameters Nocorrelationbetweencompanionoccurrenceandabundance, of these companions and compared them with the known or- similartotheonewhichispresentfordwarfstars,isfoundin bitalparametersofsub-stellarcompanionsorbitingF,GandK thissampleofgiantstars. dwarfs. About 25% of the stars in our sample have radial veloc- ity variations with significant periodicity, and could possibly 5. DiscussionandConclusion harbour a sub-stellar companion, while approximately only The tight correlation we found between logg and half of the 8% of the 1330 F, G and K main sequence stars investigated peak-to-peakradialvelocityvariationsseemstoindicatethata byMarcyetal.(2005)haveasub-stellarcompanion.Recently largefractionof the observedradialvelocityvariationsin our Johnsonetal. (2007) and Lovis&Mayor (2007) showed that sampleofKgiantsisinducedbymechanism(s)intrinsictothe thenumberofcompanionharbouringstarsincreaseswithmass. stars.Wealsopresentevidencethatbothintrinsicandextrinsic Thegiantsinthepresentsamplehavetypicalmassesbetween mechanisms play a role. The stars with a significant periodic 1and4M⊙ andareingeneralmoremassivethanthemainse- signal are almost all located above the radial velocity ampli- quencestarsinvestigatedforcompanions.So,thehighpercent- tudevs.loggrelation,butwhentheperiodicsignalisremoved, age is qualitativelyin agreementwith the results from the lit- theresidualsshowthesametrendasforthenon-periodicstars. erature.Furthermore,Lovis&Mayor(2007)suggestthatmore Furthermore, no correlation is present between the amplitude massivestarsformmoremassiveplanetarysystemsthanlower oftheperiodicsignalandlogg. mass stars. Figs 5 and 6 show that we find, in general, more S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. 9 massive companions around the more massive K giants than preparation)becausetheamountofsuchdataathandtodayis arepresentaroundF,GandKdwarfs. insufficienttoaddsignificantlytotheconclusionsofthispaper. The highpercentageof more massive companionsaround themoremassiveKgiantstarswouldalsobecompatiblewith Acknowledgements. WethankDebraFischer,GeoffMarcyandPaul the core accretion model. This model predicts very few giant Butlerforusefuldiscussionsandthedevelopmentoftheinstrumenta- planets,butarelativelylargenumberofplanetswiththemass tionandsoftwareforthedeterminationoftheradialvelocitiesatLick ofNeptuneorsmalleraroundMdwarfs(Laughlinetal.2004: Observatory.Inaddition,wethanktheentirestaffatLickObservatory Ida&Lin 2005). This is mainly the result of a much reduced fortheirexcellentsupport.Finally,wewouldliketothanktheanony- surfacedensityofthediskandtheresultingshorterdiskevolu- mousrefereeforvaluablecommentsandsuggestions. tiontimescalescomparedtothoseformoremassivestars,im- plying that planet properties vary with the mass of their host References stars.Inparticular,onewouldexpectmoresub-stellarcompan- ions with higher masses in our giant sample, as is indeed the Armitage,P.J.&Bonnell,I.A.2002,MNRAS,330,L11 caseifweassumethatthecompanionhypothesisiscorrect. Bedding,T.R.,Butler,R.P.,Carrier,F.,etal.2006,ApJ,647, 558 The mean metallicity of companion-hosting K giants Butler, R. P., Marcy, G. W., Williams, E., et al. 1996, PASP, would be similar to the mean metallicity of the total sam- 108,500 ple. This is in contrast with the correlation between com- Butler,R.P.,Wright,J.T.,Marcy,G.W.,etal.2006,ApJ,646, panion occurrence and metallicity present in F, G and K 505 dwarfs (e.g. Fischer&Valenti 2005). So far, several groups Castelli,F.,Gratton,R.G.,&Kurucz,R.L.1997,A&A,324, have investigated the correlation between companion oc- 432 currence and metallicity for giants with different results. Cumming,A., Marcy,G. W., & Butler, R. P. 1999,ApJ, 526, Sadakaneetal. (2005) and Pasquinietal. (2007) agree that 890 companion-ahosting giants are on average not metal-rich, De Ridder, J., Barban, C., Carrier, F., et al. 2006,A&A, 448, while Hekker&Mele´ndez (2007) find that giants with an- 689 nounced companions have higher metallicities than their to- Do¨llinger,M.P.,Hatzes,A.P.,Pasquini,L.,etal.2007,A&A, tal sample of giants. A detailed discussion aboutthese differ- 472,649 ent results is presented by Hekker&Mele´ndez (2007). They Eggenberger, P., Carrier, F., Bouchy, F., & Blecha, A. 2004, conclude that the samples on which the results are based A&A,422,247 are slightly different and the more metal-rich stars used in Fischer,D.A.&Valenti,J.2005,ApJ,622,1102 their study are lacking in the study by Pasquinietal. (2007). Frink, S., Mitchell, D. S., Quirrenbach, A., et al. 2002, ApJ, Furthermore,there is a difference in zero-pointcorrection for 576,478 the metallicities of announced companion-hosting stars from Frink,S.,Quirrenbach,A.,Fischer,D.,Ro¨ser,S.,&Schilbach, differentsurveys.Allinall,theseinferencesarebasedonsmall- E.2001,PASP,113,173 numberstatisticsandallresultshavetobetakenwithcaution. Galland,F.,Lagrange,A.-M.,Udry,S.,etal.2006,A&A,452, Thelargersemi-majoraxisandlongperiodsoftheinferred 709 companionsorbitingKgiantstarscomparedtocompanionsor- Gladman,B.1993,Icarus,106,247 biting dwarf stars are most likely due to the extended atmo- Gonzalez,G.1997,MNRAS,285,403 spheres of K giants. For the eccentricity no significant differ- Hatzes,A.P.&Cochran,W.D.1998,inAstronomicalSociety ence is found in the distribution between companions orbit- of the Pacific Conference Series, Vol. 154, Cool Stars, ingdwarfsorgiants.Nevertheless,thehighnumberofinferred Stellar Systems, and the Sun, ed. R. A. Donahue & J. A. companionsaroundgiantswitheccentricities<0.3isstriking. Bookbinder,311 Onecouldsuspectthatcompanionorbitscirculariseovertime Hatzes,A.P.,Cochran,W.D.,Endl,M.,etal.2006,A&A,457, and that the companions in circular orbits are older than the 335 eccentricones,butthereisnoevidenceforthishypothesis. Hatzes, A. P., Guenther, E. W., Endl, M., et al. 2005, A&A, In principle, nearly sinusoidal radial velocity variations 437,743 couldalsobecausedbypulsationsorspots.Althoughtheperi- Hekker,S.&Mele´ndez,J.2007,A&A,475,1003 odsoftheradialvelocityvariationscouldwellbetherotational Hekker,S.,Reffert,S.,Quirrenbach,A.,etal.2006,A&A,454, periodsofthestars,thepresenceofprominentspotsisnotvery 943 likely. In that case one would also expect photometric varia- Ida,S.&Lin,D.N.C.2005,ApJ,626,1045 tionswithperiodscorrelatedwiththeradialvelocityvariations. Johnson,J.A.,Fischer,D.A.,Marcy,G.W.,etal.2007,ApJ, FromtheHipparcosphotometry(Perryman&ESA1997)such 665,785 correlationswerenotfound. Johnson,J.A.,Marcy,G.W.,Fischer,D.A.,etal.2006,ApJ, Inordertodistinguishwithcertaintybetweencompanions 652,1724 andpulsationsasthecauseoftheobservedradialvelocityvari- Kuschnig,R.,Weiss,W.W.,Gruber,R.,Bely,P.Y.,&Jenkner, ations, one needs to perform a spectral line profile analysis. H.1997,A&A,328,544 A technique for doing this with very high-resolution spectra Laughlin,G.,Bodenheimer,P.,&Adams,F.C.2004,ApJ,612, (R ≥ 100000) will be presented separately (Hekker et al., in L73 10 S.Hekkeretal.:Preciseradialvelocitiesofgiantstars.IV. Lovis,C.&Mayor,M.2007,A&A,706,inpress Marcy, G., Butler, R. P., Fischer, D., et al. 2005, Progress of TheoreticalPhysicsSupplement,158,24 Marcy,G.W.&Butler,R.P.1992,PASP,104,270 Marcy,G.W.&Butler,R.P.2000,PASP,112,137 Marcy,G.W.,Butler,R.P.,Vogt,S.S.,etal.2001,ApJ,555, 418 Martic´,M.,Lebrun,J.-C.,Appourchaux,T.,&Korzennik,S.G. 2004,A&A,418,295 Niedzielski,A.,Konacki,M.,Wolszczan,A.,etal.2007,ApJ, 669,1354 Pasquini, L., Do¨llinger, M. P., Weiss, A., et al. 2007, A&A, 473,979 Pepe, F., Bouchy,F., Queloz, D., & Mayor, M. 2003, in ASP Conf.Ser.294:ScientificFrontiersinResearchonExtrasolar Planets,39 Perryman, M. A. C. & ESA, eds. 1997, ESA Special Publication,Vol.1200,TheHIPPARCOSandTYCHOcata- logues.Astrometricandphotometricstarcataloguesderived fromtheESAHIPPARCOSSpaceAstrometryMission Press, W. H.,Teukolsky,S. A., Vetterling,W. T.,& Flannery, B.P.1992,NumericalrecipesinC.Theartofscientificcom- puting(Cambridge:UniversityPress,Ic1992,2nded.) Queloz,D.,Mayor,M.,Udry,S.,etal.2001,TheMessenger, 105,1 Reffert,S., Quirrenbach,A., Mitchell,D. S.,etal. 2006,ApJ, 652,661 Sadakane, K., Ohnishi, T., Ohkubo, M., & Takeda, Y. 2005, PASJ,57,127 Santos,N.C.,Israelian,G.,Mayor,M.,etal.2005,A&A,437, 1127 Sato,B.,Ando,H.,Kambe,E.,etal.2003,ApJ,597,L157 Scargle,J.D.1982,ApJ,263,835 Setiawan,J.,Hatzes,A.P.,vonderLu¨he,O.,etal.2003,A&A, 398,L19 Setiawan,J.,Rodmann,J.,daSilva,L.,etal.2005,A&A,437, L31 Sneden, C. A. 1973, PhD thesis, AA(University of Texas at Austin) Valenti,J.A.,Butler,R.P.,&Marcy,G.W.1995,PASP,107, 966

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.