1111427631 ifc.qxd 9/29/10 9:46 AM Page 2 Library of Parent Functions Summary Linear Function (p. 6) Absolute Value Function (p. 19) Square Root Function (p. 20) (cid:9) f(cid:2)x(cid:3)(cid:2)x f(cid:2)x(cid:3)(cid:2)(cid:8)x(cid:8)(cid:2) x, x ≥ 0 f(cid:2)x(cid:3)(cid:2)(cid:7)x (cid:4)x, x < 0 y y y 2 4 3 f(x) = x 1 f(x) = x f(x) = ⏐x⏐ 2 x x (0, 0) −2 −1 (0, 0) 2 1 −1 x −1 (0, 0) 2 3 4 −2 −1 Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain: (cid:4)0, (cid:3)(cid:3) Range: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Range: (cid:4)0, (cid:3)(cid:3) Range: (cid:4)0, (cid:3)(cid:3) Intercept: (cid:2)0, 0(cid:3) Intercept: (cid:2)0, 0(cid:3) Intercept: (cid:2)0, 0(cid:3) Increasing Decreasing on (cid:2)(cid:4)(cid:3), 0(cid:3) Increasing on (cid:2)0, (cid:3)(cid:3) Increasing on (cid:2)0, (cid:3)(cid:3) Even function y-axis symmetry Greatest Integer Function (p. 34) Quadratic Function (p. 92) Cubic Function (p. 101) f(cid:2)x(cid:3)(cid:2)(cid:5)x(cid:6) f(cid:2)x(cid:3)(cid:2) ax2 f(cid:2)x(cid:3)(cid:2) x3 y y y f(x) = [ [ x]] 3 4 3 2 3 2 1 2 (0, 0) x 1 f(x) = x2 x −3 −2 −1 1 2 3 −3 −2 1 2 3 −3 −2 −1 1 2 3 x −1 f(x) = x3 −1 (0, 0) −2 −3 −2 −3 Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Range: the set of integers Range: (cid:4)0, (cid:3)(cid:3) Range: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) x-intercepts:in the interval (cid:4)0, 1(cid:3) Intercept: (cid:2)0, 0(cid:3) Intercept: (cid:2)0, 0(cid:3) y-intercept: (cid:2)0, 0(cid:3) Decreasing on (cid:2)(cid:4)(cid:3), 0(cid:3) Increasing on (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Constant between each pair of Increasing on (cid:2)0, (cid:3)(cid:3) Odd function consecutive integers Even function Origin symmetry Jumps vertically one unit at Axis of symmetry: x(cid:2) 0 each integer value Relative minimum or vertex: (cid:2)0, 0(cid:3) Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 1111427631 ifc.qxd 9/29/10 9:46 AM Page 3 Rational Function (p. 152) Exponential Function (p. 182) Logarithmic Function (p. 195) 1 f(cid:2)x(cid:3)(cid:2) f(cid:2)x(cid:3)(cid:2)ax, a > 0, a(cid:6) 1 f(cid:2)x(cid:3)(cid:2)log x, a > 0, a(cid:6)1 x a y y y 3 1 2 f(x) = x 1 f(x) = loga x 1 f(x) = ax f(x) = a−x (0, 1) (1, 0) x x −1 1 2 3 1 2 x −1 Domain: (cid:2)(cid:4)(cid:3), 0(cid:3)(cid:2)(cid:2)0, (cid:3)) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain: (cid:2)0, (cid:3)(cid:3) Range: (cid:2)(cid:4)(cid:3), 0(cid:3)(cid:2)(cid:2)0, (cid:3)) Range: (cid:2)0, (cid:3)(cid:3) Range: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) No intercepts Intercept: (cid:2)0, 1(cid:3) Intercept: (cid:2)1, 0(cid:3) Decreasing on (cid:2)(cid:4)(cid:3), 0(cid:3)and (cid:2)0, (cid:3)(cid:3) Increasing on (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Increasing on (cid:2)0, (cid:3)(cid:3) Odd function for f(cid:2)x(cid:3)(cid:2)ax y-axis is a vertical asymptote Origin symmetry Decreasing on (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Continuous Vertical asymptote: y-axis for f(cid:2)x(cid:3)(cid:2)a(cid:4)x Reflection of graph of f(cid:2)x(cid:3)(cid:2)ax Horizontal asymptote: x-axis x-axis is a horizontal asymptote in the line y(cid:2)x Continuous Sine Function (p. 293) Cosine Function (p. 293) Tangent Function (p. 304) f(cid:2)x(cid:3)(cid:2)sin x f(cid:2)x(cid:3)(cid:2)cos x f(cid:2)x(cid:3)(cid:2)tan x y y y f(x) = tan x 3 3 3 f(x) = sin x f(x) = cos x 2 2 2 1 1 x x x −π π2 π −π −1 π2 π 2π −π π π 3π 2 2 2 −2 −2 −3 −3 (cid:5) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Domain:x(cid:6) (cid:7)n(cid:5) 2 Range: (cid:4)(cid:4)1, 1(cid:10) Range: (cid:4)(cid:4)1, 1(cid:10) Range:(cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Period: 2(cid:5) Period: 2(cid:5) x-intercepts: (cid:2)n(cid:5), 0(cid:3) (cid:11)(cid:5) (cid:12) Period:(cid:5) y-intercept: (cid:2)0, 0(cid:3) x-intercepts: 2 (cid:7)n(cid:5), 0 x-intercepts:(cid:2)n(cid:5), 0(cid:3) y-intercept:(cid:2)0, 0(cid:3) Odd function y-intercept: (cid:2)0, 1(cid:3) (cid:5) Origin symmetry Even function Vertical asymptotes: x(cid:2) (cid:7)n(cid:5) 2 y-axis symmetry Odd function Origin symmetry Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 1111427631 ifc.qxd 9/29/10 9:46 AM Page 4 Cosecant Function (p. 307) Secant Function (p. 307) Cotangent Function (p. 306) f(cid:2)x(cid:3)(cid:2)csc x f(cid:2)x(cid:3)(cid:2)sec x f(cid:2)x(cid:3)(cid:2) cot x 1 1 1 y f(x) = csc x = y f(x) = sec x = y f(x) = cot x = sin x cos x tan x 3 3 3 2 2 2 1 1 x x x −π π π 2π −π −π π π 3π 2π −π −π π π 2π 2 2 2 2 2 2 −2 −3 (cid:5) Domain: x(cid:6)n(cid:5) Domain: x(cid:6) (cid:7) n(cid:5) Domain: x(cid:6)n(cid:5) 2 Range: (cid:2)(cid:4)(cid:3), (cid:4)1(cid:10)(cid:2)(cid:4)1, (cid:3)(cid:3) Range: (cid:2)(cid:4)(cid:3), (cid:4)1(cid:10)(cid:2)(cid:4)1, (cid:3)(cid:3) Range: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Period: 2(cid:5) Period: 2(cid:5) Period: (cid:5) No intercepts (cid:11)(cid:5) (cid:12) Vertical asymptotes: x(cid:2)n(cid:5) y-intercept: (cid:2)0, 1(cid:3) x-intercepts: 2 (cid:7)n(cid:5), 0 Vertical asymptotes: Odd function (cid:5) Vertical asymptotes: x(cid:2) n(cid:5) Origin symmetry x(cid:2) (cid:7)n(cid:5) Odd function 2 Even function Origin symmetry y-axis symmetry Inverse Sine Function (p. 319) Inverse Cosine Function (p. 319) Inverse Tangent Function (p. 319) f(cid:2)x(cid:3)(cid:2)arcsin x f(cid:2)x(cid:3)(cid:2)arccos x f(cid:2)x(cid:3)(cid:2) arctan x y y y π π π 2 2 f(x) = arccos x x x −1 1 −2 −1 1 2 f(x) = arcsin x f(x) = arctan x π π − x − 2 −1 1 2 Domain: (cid:4)(cid:4)1, 1(cid:10) Domain: (cid:4)(cid:4)1, 1(cid:10) Domain: (cid:2)(cid:4)(cid:3), (cid:3)(cid:3) Range: (cid:13)(cid:4)(cid:5), (cid:5)(cid:14) Range: (cid:4)0, (cid:5)(cid:10) Range: (cid:11)(cid:4)(cid:5), (cid:5)(cid:12) 2 2 (cid:11) (cid:5)(cid:12) 2 2 Intercept: (cid:2)0, 0(cid:3) y-intercept: 0, 2 Intercept: (cid:2)0, 0(cid:3) Odd function (cid:5) Horizontal asymptotes: y(cid:2)± Origin symmetry 2 Odd function Origin symmetry Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 1111427631 Precalc SE FM.qxd 10/12/10 3:49 PM Page i Precalculus Real Mathematics, Real People Sixth Edition Ron Larson The Pennsylvania State University, The Behrend College With the assistance of David C. Falvo The Pennsylvania State University, The Behrend College y y 3 8 2 2x x2 3x 8 6 f x f x x 2 x 3 4 x − 2 1 2 3 2 − 1 − x 2 4 x 2 Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States 4 6 8 − x 2 1 3 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially a ffect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit w ww.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest. Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 5522660099__0000__ffmm__ppii--ppxxxxvvii..iinndddd iiii 22//11//1100 1111::3377::4433 PPMM 1111427631 Precalc SE FM.qxd 10/12/10 3:49 PM Page ii Precalculus: Real Mathematics, Real People © 2012, 2008 Brooks/Cole, Cengage Learning Sixth Edition ALL RIGHTS RESERVED. No part of this work covered by the copyright Ron Larson herein may be reproduced, transmitted, stored, or used in any form or by Acquiring Sponsoring Editor: Gary Whalen any means graphic, electronic, or mechanical, including but not limited Development Editor: Stacy Green to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, Assistant Editor: Cynthia Ashton except as permitted under Section 107 or 108 of the 1976 United States Editorial Assistant: Naomi Dreyer Copyright Act, without the prior written permission of the publisher. Media Editor: Lynh Pham Marketing Manager: Myriah FitzGibbon For product information and technology assistance, contact us at Marketing Coordinator: Shannon Myers Cengage Learning Customer & Sales Support, 1-800-354-9706 Marketing Communications Manager: Darlene Macanan For permission to use material from this text or product, Content Project Manager: Jessica Rasile submit all requests online at www.cengage.com/permissions. Further permissions questions can be emailed to Senior Art Director: Jill Ort [email protected] Senior Print Buyer: Diane Gibbons Rights Acquisitions Specialist: Mandy Groszko Library of Congress Control Number: 2010937948 Text Designer: Larson Texts, Inc. Cover Designer: Harold Burch Student Edition: Compositor: Larson Texts, Inc. ISBN-13: 978-1-111-42763-4 ISBN-10: 1-111-42763-1 Brooks/Cole 10 Davis Drive Belmont, CA 94002-3098 USA Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit www.cengage.com Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com x Printed in the United States of America 1 2 3 4 5 6 7 13 12 11 10 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 1111427631 Precalc SE FM.qxd 10/12/10 3:49 PM Page iii Precalculus Real Mathematics, Real People Sixth Edition Contents Chapter 1 Functions and Their Graphs 1 Introduction to Library of Functions 2 1.1 Lines in the Plane 3 1.2 Functions 16 1.3 Graphs of Functions 29 1.4 Shifting, Reflecting, and Stretching Graphs 41 1.5 Combinations of Functions 50 1.6 Inverse Functions 60 1.7 Linear Models and Scatter Plots 71 Chapter Summary 80 Review Exercises 82 Chapter Test 86 Proofs in Mathematics 87 Chapter 2 Polynomial and Rational Functions 89 2.1 Quadratic Functions 90 2.2 Polynomial Functions of Higher Degree 100 2.3 Real Zeros of Polynomial Functions 113 2.4 Complex Numbers 128 2.5 The Fundamental Theorem of Algebra 135 2.6 Rational Functions and Asymptotes 142 y y 2.7 Graphs of Rational Functions 151 2.8 Quadratic Models 161 Chapter Summary 168 Review Exercises 170 Chapter Test 175 Proofs in Mathematics 176 8 Progressive Summary (Chapters 1 and 2) 178 L 1 L Chapter 3 Exponential and Logarithmic Functions 179 3 6 3.1 Exponential Functions and Their Graphs 180 3.2 Logarithmic Functions and Their Graphs 192 3.3 Properties of Logarithms 203 4 3.4 Solving Exponential and Logarithmic Equations 210 x 3.5 Exponential and Logarithmic Models 221 3.6 Nonlinear Models 233 L 2 Chapter Summary 242 Review Exercises 244 2 x Chapter Test 248 Cumulative Test: Chapters 1–3 249 Proofs in Mathematics 251 Progressive Summary (Chapters 1–3) 252 x iii 4 6 8 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 1111427631 Precalc SE FM.qxd 10/12/10 3:49 PM Page iv iv Contents Chapter 4 Trigonometric Functions 253 4.1 Radian and Degree Measure 254 4.2 Trigonometric Functions: The Unit Circle 265 4.3 Right Triangle Trigonometry 273 4.4 Trigonometric Functions of Any Angle 284 4.5 Graphs of Sine and Cosine Functions 292 4.6 Graphs of Other Trigonometric Functions 304 4.7 Inverse Trigonometric Functions 315 4.8 Applications and Models 326 Chapter Summary 338 Review Exercises 340 Chapter Test 345 Library of Parent Functions Review 346 Proofs in Mathematics 348 Chapter 5 Analytic Trigonometry 349 5.1 Using Fundamental Identities 350 5.2 Verifying Trigonometric Identities 357 5.3 Solving Trigonometric Equations 365 5.4 Sum and Difference Formulas 377 5.5 Multiple-Angle and Product-to-Sum Formulas 384 Chapter Summary 394 Review Exercises 396 Chapter Test 399 Proofs in Mathematics 400 Chapter 6 Additional Topics in Trigonometry 403 6.1 Law of Sines 404 6.2 Law of Cosines 413 6.3 Vectors in the Plane 420 6.4 Vectors and Dot Products 434 6.5 Trigonometric Form of a Complex Number 443 Chapter Summary 456 Review Exercises 458 y Chapter Test 461 Cumulative Test: Chapters 4–6 462 Proofs in Mathematics 464 Progressive Summary (Chapters 1–6) 468 3 2 x − 2 1 2 3 2x − 1 f x x 3 − 2 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 1111427631 Precalc SE FM.qxd 10/12/10 3:49 PM Page v Contents v Chapter 7 Linear Systems and Matrices 469 7.1 Solving Systems of Equations 470 7.2 Systems of Linear Equations in Two Variables 480 7.3 Multivariable Linear Systems 489 7.4 Matrices and Systems of Equations 504 7.5 Operations with Matrices 518 7.6 The Inverse of a Square Matrix 532 7.7 The Determinant of a Square Matrix 541 7.8 Applications of Matrices and Determinants 548 Chapter Summary 558 Review Exercises 560 Chapter Test 566 Proofs in Mathematics 567 Chapter 8 Sequences, Series, and Probability 569 8.1 Sequences and Series 570 8.2 Arithmetic Sequences and Partial Sums 581 8.3 Geometric Sequences and Series 589 8.4 The Binomial Theorem 599 8.5 Counting Principles 607 8.6 Probability 616 Chapter Summary 626 Review Exercises 628 Chapter Test 631 Proofs in Mathematics 632 Chapter 9 Topics in Analytic Geometry 635 9.1 Conics: Circles and Parabolas 636 9.2 Ellipses 647 9.3 Hyperbolas and Rotation of Conics 656 y 9.4 Parametric Equations 669 y 9.5 Polar Coordinates 677 9.6 Graphs of Polar Equations 683 9.7 Polar Equations of Conics 691 8 Chapter Summary 698 Review Exercises 700 L Chapter Test 704 Cumulative Test: Chapters 7–9 705 1 Proofs in Mathematics 707 L 3 Progressive Summary (Chapters 3–9) 710 6 Chapter 10 Analytic Geometry in Three Dimensions 711 10.1 The Three-Dimensional Coordinate System 712 4 10.2 Vectors in Space 719 x 10.3 The Cross Product of Two Vectors 726 10.4 Lines and Planes in Space 733 L 2 2 x Chapter Summary 742 Review Exercises 744 Chapter Test 746 Proofs in Mathematics 747 x 4 6 8 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.