This page intentionally left blank Cambridge Texts in Applied Mathematics Allthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfrom CambridgeUniversityPress.Foracompleteserieslistingvisit http://publishing.cambridge.org/stm/mathematics/ctam ViscousFlow H.OckendonandJ.R.Ockendon AFirstCourseintheNumericalAnalysisofDifferentialEquations AriehIserles MathematicalModelsintheAppliedSciences A.C.Fowler ThinkingAboutOrdinaryDifferentialEquations RobertE.O'Malley AModernIntroductiontotheMathematicalTheoryofWaterWaves R.S.Johnson RarefiedGasDynamics CarloCercignani SymmetryMethodsforDifferentialEquations PeterE.Hydon HighSpeedFlow C.J.Chapman WaveMotion J.BillinghamandA.C.King AnIntroductiontoMagnetohydrodynamics P.A.Davidson LinearElasticWaves JohnG.Harris VorticityandIncompressibleFlow A.J.MajdaandA.L.Bertozzi Infinite-dimensionalDynamicalSystems J.C.Robinson IntroductiontoSymmetryAnalysis BrianJ.Cantwell Ba¨cklundandDarbouxTransformations C.RogersandW.K.Schief FiniteVolumeMethodsforHyperbolicProblems R.J.Leveque IntroductiontoHydrodynamicStability P.G.Drazin TheoryofVortexSound M.S.Howe Scaling G.I.Barenblatt ComplexVariables:IntroductionandApplications(Secondedition) MarkJ.AblowitzandAthanassiosS.Fokas AFirstCourseinCombinatorialOptimization JonLee Practical Applied Mathematics Modelling, Analysis, Approximation SAMHOWISON MathematicalInstitute,OxfordUniversity DirectorofTheOxfordCentreforIndustrialand AppliedMathematics Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridg e.org /9780521842747 © Cambridge University Press 2005 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2005 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface Pagexi PartI Modellingtechniques 1 Thebasicsofmodelling 3 1.1 Introduction 3 1.2 Whatdowemeanbyamodel? 4 1.3 Principlesofmodelling:physicallawsandconstitutiverelations 6 1.4 Conservationlaws 11 1.5 Generalremarks 12 1.6 Exercises 12 2 Units,dimensionsanddimensionalanalysis 15 2.1 Introduction 15 2.2 Unitsanddimensions 16 2.3 Electricfieldsandelectrostatics 18 2.4 Sourcesandfurtherreading 20 2.5 Exercises 20 3 Nondimensionalisation 28 3.1 Nondimensionalisationanddimensionalparameters 28 3.2 TheNavier–StokesequationsandReynoldsnumbers 36 3.3 Buckingham’sPi-theorem 40 3.4 Sourcesandfurtherreading 42 3.5 Exercises 42 4 Casestudies:hairmodellingandcablelaying 50 4.1 TheEuler–Bernoullimodelforabeam 50 4.2 Hairmodelling 52 4.3 Underseacablelaying 53 4.4 Modellingandanalysis 54 4.5 Sourcesandfurtherreading 58 4.6 Exercises 58 v vi Contents 5 Casestudy:thethermistor(1) 63 5.1 Heatandcurrentflowinthermistors 63 5.2 Nondimensionalisation 66 5.3 Athermistorinacircuit 67 5.4 Sourcesandfurtherreading 69 5.5 Exercises 69 6 Casestudy:electrostaticpainting 72 6.1 Electrostaticpainting 72 6.2 Fieldequations 73 6.3 Boundaryconditions 75 6.4 Nondimensionalisation 76 6.5 Sourcesandfurtherreading 77 6.6 Exercises 77 PartII Analyticaltechniques 7 Partialdifferentialequations 81 7.1 First-orderquasilinearpartialdifferentialequations:theory 81 7.2 Example:Poissonprocesses 85 7.3 Shocks 87 7.4 Fullynonlinearequations:Charpitt’smethod 90 7.5 Second-orderlinearequationsintwovariables 94 7.6 Furtherreading 97 7.7 Exercises 97 8 Casestudy:trafficmodelling 104 8.1 Simplemodelsfortrafficflow 104 8.2 Trafficjamsandotherdiscontinuoussolutions 107 8.3 Moresophisticatedmodels 110 8.4 Sourcesandfurtherreading 111 8.5 Exercises 111 9 Thedeltafunctionandotherdistributions 114 9.1 Introduction 114 9.2 Apointforceonastretchedstring;impulses 115 9.3 InformaldefinitionofthedeltaandHeavisidefunctions 117 9.4 Examples 120 9.5 Balancingsingularities 122 9.6 Green’sfunctions 125 9.7 Sourcesandfurtherreading 134 9.8 Exercises 134 Contents vii 10 Theoryofdistributions 140 10.1 Testfunctions 140 10.2 Theactionofatestfunction 141 10.3 Definitionofadistribution 142 10.4 Furtherpropertiesofdistributions 143 10.5 Thederivativeofadistribution 143 10.6 Extensionsofthetheoryofdistributions 145 10.7 Sourcesandfurtherreading 148 10.8 Exercises 148 11 Casestudy:thepantograph 157 11.1 Whatisapantograph? 157 11.2 Themodel 158 11.3 Impulsiveattachmentforanundampedpantograph 160 11.4 Solutionnearasupport 162 11.5 Solutionforawholespan 164 11.6 Sourcesandfurtherreading 167 11.7 Exercises 167 PartIII Asymptotictechniques 12 Asymptoticexpansions 173 12.1 Introduction 173 12.2 Ordernotation 175 12.3 Convergenceanddivergence 178 12.4 Sourcesandfurtherreading 180 12.5 Exercises 180 13 Regularperturbationexpansions 183 13.1 Introduction 183 13.2 Example:stabilityofaspacecraftinorbit 184 13.3 Linearstability 185 13.4 Example:thependulum 188 13.5 Smallperturbationsofaboundary 190 13.6 Caveatexpandator 194 13.7 Exercises 195 14 Casestudy:electrostaticpainting(2) 200 14.1 Smallparametersintheelectropaintmodel 200 14.2 Exercises 202 15 Casestudy:pianotuning 205 15.1 Thenotesofapiano:thetonalsystemofWesternmusic 205 viii Contents 15.2 Tuninganidealpiano 208 15.3 Arealpiano 209 15.4 Sourcesandfurtherreading 211 15.5 Exercises 211 16 Boundarylayers 216 16.1 Introduction 216 16.2 Functionswithboundarylayers;matching 216 16.3 Examplesfromordinarydifferentialequations 221 16.4 Casestudy:cablelaying 224 16.5 Examplesforpartialdifferentialequations 225 16.6 Exercises 230 17 Casestudy:thethermistor(2) 235 17.1 Stronglytemperature-dependentconductivity 235 17.2 Exercises 238 18 ‘Lubricationtheory’analysisinlongthindomains 240 18.1 ‘Lubricationtheory’approximations:slendergeometries 240 18.2 Heatflowinabarofvariablecross-section 241 18.3 Heatflowinalongthindomainwithcooling 244 18.4 Advection–diffusioninalongthindomain 246 18.5 Exercises 249 19 Casestudy:continuouscastingofsteel 255 19.1 Continuouscastingofsteel 255 19.2 Exercises 260 20 Lubricationtheoryforfluids 263 20.1 Thinfluidlayers:classicallubricationtheory 263 20.2 Thinviscousfluidsheetsonsolidsubstrates 265 20.3 Thinfluidsheetsandfibres 271 20.4 Furtherreading 275 20.5 Exercises 275 21 Casestudy:turningofeggsduringincubation 285 21.1 Incubatingeggs 285 21.2 Modelling 286 21.3 Exercises 290 22 Multiplescalesandothermethodsfornonlinearoscillators 292 22.1 ThePoincare´–Linstedtmethod 292 22.2 Themethodofmultiplescales 294
Description: