ebook img

Practical Anytime Codes PDF

170 Pages·2016·1.71 MB·Swedish
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Practical Anytime Codes

Practical Anytime Codes LEEFKE GROSJEAN Doctoral Thesis Stockholm, Sweden 2016 KTH School of Electrical Engineering SE-100 44 Stockholm ISBN 978-91-7595-937-5 SWEDEN Akademisk avhandling sommedtillstånd av KunglTekniskahögskolanframlägges till offentlig granskning för avläggande av teknologie doktorsexamen i telekommu- nication den 13 Maj 2016 klockan 10:00 i Sal F3, Lindstedtsvägen 26, Stockholm. © Leefke Grosjean, April 2016 Parts of this thesis have been published under IEEE copyright Tryck: Universitetsservice US AB Abstract The demand of an increasingly networked world is well reflected in modern indus- trialcontrolsystemswherecommunicationbetweenthedifferentcomponentsofthe system is more and more taking place over a network. With an increasing number of components communicating and with hardware devices of low complexity, the communication resources available per communication link are however very lim- ited. Yet, despite limited resources, the control signals transmitted over the link are still required to meet strict real-time and reliability constraints. This requires entirely new approaches in the intersection of communication and control theory. In this thesis we consider the problem of stabilizing an unstable linear-quadratic- Gaussian(LQG)plantwhen the communicationlink betweenthe observerandthe controlleroftheplantisnoisy. Protectingthedatatransmittedbetweenthesecom- ponents against transmission errors by using error control schemes is essential in this contextandthe main subject to this thesis. We proposenovelerror-correcting codes,so-calledanytimecodes,for this purpose andshowthatthey asymptotically fulfill the reliability requirements known from theory when used for transmission over the binary erasure channel (BEC). We identify fundamental problems when the messages to be transmitted are very short and/or the communication channel quality is very low. We propose a combinatorialfinite-length analysis which allows us to identify important parameters for a proper design of anytime codes. Various modificationsofthebasiccodestructureareexplored,demonstratingtheflexibility ofthecodesandthecapabilityofthecodestobeadaptedtodifferentpracticalcon- straints. To cope with communication channels of low quality, different feedback protocolsareproposedforthe BECandtheAWGNchannelthattogetherwiththe error-correctingcodesensurethereliabilityconstraintsatshortdelaysevenforvery short message lengths. In the last part of this thesis, we integrate the proposed anytime codes in an automatic controlsetup. We specify the different components necessaryforthisanddeterminethecontrolcostwhencontrollinganunstableLQG plant over a BEC using either the anytime codes proposed in this thesis or block codes. We detail the relation between parameters such as channel quality, code rate, plant instability and resources available and highlight the advantage of us- ing anytime codes in this context. Throughout the thesis, the performance of the anytime codes is evaluated using asymptotic analysis,finite-length analysisand/or simulation results. Sammanfattning Efterfrågan av en alltmer ihopkopplad värld återspeglas bland annat i moderna industriella styrsystem där kommunikationen mellan de olika komponenterna allt oftareskeröverettnätverk. Eftersomantaletkomponentersomkommunicerarmed varandra ökar, medans hårdvaruenheternas komplexitet är fortsatt låg, blir kom- munikationsresurserna per kommunikationslänk alltmer begränsade. Trots detta måste styrsignalerna som skickas över länken uppfylla strikta krav på tillåtna tidsfördröjningar och nödvändig tillförlitlighet. Detta kräver helt nya metoder i gränssnittet mellan kommunikationsteknik och reglerteknik. I denna avhandlin- gen undersöker vi problemet med att stabilisera ett instabilt linjärt kvadratiskt Gaussiskt (LQG) system när kommunikationslänken mellan observatören och reg- ulatorn är störd av brus. Att skydda styrsignalerna mot störningar i kommunika- tionskanalenmedhjälpavfelkorrigerandekoderärviktigtidettasammanhangoch är huvudtemat för denna avhandlingen. Vi föreslår nya felkorrigerande koder, så kallade anytime-koder, och visar att de asymptotiskt uppnår kraven på tillförlit- lighetfrånteorinför dataöverförningöveren binär raderingskanal(BEC). Vi iden- tifierargrundläggandeproblemnär meddelandena somska skickasär väldigtkorta eller om kommunikationskanalenär av dålig kvalitet. Vi föreslår en kombinatorisk analys för meddelanden med ändlig blocklängd som tillåter oss att identifiera vik- tigakonstruktionsparametrar. Olikamodifieringaravdengrundläggandekodstruk- turenundersökssompåvisarflexibilitetenhoskodernaochmöjlighetenattanpassa koderna till diverse praktiska begränsningar. För att även använda koderna för kommunikationskanaler med mycket brus föreslår vi olika återkopplingsprotokoll som tillämpas vid överförning över BEC eller AWGN kanalen. I sista delen av avhandlingenintegrerarviddeföreslagnakodernaiettreglerteknisktsammanhang. Vi specificerarde olika komponenternaochberäknarkontrollkostnadenför ett sce- nario där vi ska stabilisera ett instabilt LQG system och kommunikationslänken mellanobservatörenochregulatornmodellerassomen BEC kanal. Det föregående görs för både de föreslagna koderna och för blockkoder. Vi specificerar sambandet mellan parametrarna såsom kanalkvalitet, kodhastighet, instabilitet, och tillgäng- liga resurser. Dessutom lyfter vi fram fördelarna med att använda anytime-koder för detta sammanhang. Genom hela avhandlingen utvärderas kodernas prestanda med hjälp av asymptotisk analys, ändlig-blocklängdsanalysoch/eller simuleringar. v Acknowledgements Now that this five-year journey of my Ph.D. studies comes to an end, I would like to thank all the people that have supported me during this time. I would like to express my sincere gratitude to Prof. Lars Kildehøj Rasmussen, Associate Prof. RagnarThobaben,andProf. MikaelSkoglund. Mikaelgaveme the opportunityto jointheCommunicationTheorydepartmentandunderthesupervisionofLarsand Ragnar I started to explore the academic world. I am deeply grateful to Lars and Ragnar for their guidance, for their research insights, their enthusiastic encour- agement, and the independence they gave me when conducting my Ph.D. studies. Discussions with them have always been interesting, challenging, stimulating and as well lots of fun. Moreover I am truly thankful to them for their contribution in making this an open-minded, flexible and solution-driven workplace. Having had two children during my time atthe department, I highly appreciate how smooth it went to combine this with my Ph.D. studies. I am honored to have collaborated with Associate Prof. Joakim Jaldén and Associate Prof. Mats Bengtsson in teaching. I thank all my current and former colleagues from Floor 3 and 4 for creating such a nice working atmosphere. In particular, I would like to mention Dr. Kittipong Kittichokechai, Dr. Nicolas Schrammar, Dr. Isaac Skog, Dr. Dave Zachariah, Dr. Mattias Andersson, Dr. Ricardo Blasco Serrano, and Dr. Dennis Sundman. Special thanks to Raine Tiivel for her diligence in taking care of the administrative issues and Joakim Jaldén for doing the quality review of this thesis. I would like to thank Associate Prof. Michael Lentmaier for taking the time to act as faculty opponent and Prof. Catherine Douillard, Dr. Ingmar Land and Associate Prof. Carlo Fischione for acting as grading committee. I want to thank my parents Meike and Olaf and my sisters Kerrin and Jomtje for their greatsupport fromfar away. Lastbut not least,I wantto thank my husband Julien and my children for filling every day with love and happiness. Leefke Grosjean Stockholm, April 2016 vii Contents 1 Introduction 1 1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Outline and Contributions of the Thesis . . . . . . . . . . . . . . 7 1.5 Notation and Acronyms . . . . . . . . . . . . . . . . . . . . . . . 11 2 Preliminaries 13 2.1 Communication Theory . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 The Communication System . . . . . . . . . . . . . . . . 14 2.1.2 Binary Memoryless Symmetric Channels . . . . . . . . . . 14 2.1.3 Log-LikelihoodRatios . . . . . . . . . . . . . . . . . . . . 16 2.1.4 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Anytime Information Theory . . . . . . . . . . . . . . . . . . . . 19 2.2.1 The Anytime Communication System . . . . . . . . . . . 19 2.2.2 Anytime Capacity . . . . . . . . . . . . . . . . . . . . . . 20 2.2.3 Anytime Reliability . . . . . . . . . . . . . . . . . . . . . 21 2.3 Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Control System Setup . . . . . . . . . . . . . . . . . . . . 21 2.3.2 LQG Control . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 LQG Control Over Noisy Channels . . . . . . . . . . . . . 23 2.4 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 ProtographEnsembles . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Stopping Sets and Trapping Sets . . . . . . . . . . . . . . 33 2.4.5 P-EXIT Analysis . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 LDPC-ConvolutionalCodes . . . . . . . . . . . . . . . . . . . . . 34 2.5.1 Structure and Basic Definitions . . . . . . . . . . . . . . . 34 2.5.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.4 Termination of LDPC-CCs . . . . . . . . . . . . . . . . . 38 ix x Contents 3 LDPC Convolutional Anytime Codes 39 3.1 Code Development . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Anytime System Model . . . . . . . . . . . . . . . . . . . 39 3.1.2 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.3 Encoding and Decoding . . . . . . . . . . . . . . . . . . . 43 3.1.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Performance on the BEC . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Finite-Length Behavior . . . . . . . . . . . . . . . . . . . 58 3.2.3 Finite-Length Analysis . . . . . . . . . . . . . . . . . . . . 61 3.2.4 Turning Point. . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.5 Transmission Over the Standard BEC . . . . . . . . . . . 66 3.3 Performance on the AWGN Channel . . . . . . . . . . . . . . . . 68 3.3.1 Asymptotic Performance Analysis . . . . . . . . . . . . . 69 3.3.2 Finite-Length Behavior . . . . . . . . . . . . . . . . . . . 71 3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4 Comparison With Other Anytime Codes . . . . . . . . . . . . . . 72 3.4.1 Comparison with Toeplitz Codes . . . . . . . . . . . . . . 72 3.4.2 Comparison with Spatially Coupled Anytime Codes . . . 72 3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 Modified Code Structures 79 4.1 Increasing the Degrees in the Protograph . . . . . . . . . . . . . 80 4.1.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . 80 4.1.3 Finite-Length Behavior . . . . . . . . . . . . . . . . . . . 81 4.1.4 Finite-Length Analysis . . . . . . . . . . . . . . . . . . . . 83 4.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Decreasing the Degrees in the Protograph . . . . . . . . . . . . . 83 4.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.2 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . 84 4.2.3 Finite-Length Behavior . . . . . . . . . . . . . . . . . . . 84 4.2.4 Finite-Length Analysis . . . . . . . . . . . . . . . . . . . . 85 4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 Decreasing the Rate of the Code . . . . . . . . . . . . . . . . . . 87 4.3.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.2 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . 87 4.3.3 Finite-Length Behavior . . . . . . . . . . . . . . . . . . . 88 4.3.4 Finite-Length Analysis . . . . . . . . . . . . . . . . . . . . 89 4.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 Limiting the Memory of the Code. . . . . . . . . . . . . . . . . . 90 4.4.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . 91 4.4.3 Finite-Length Behavior . . . . . . . . . . . . . . . . . . . 91

Description:
tionskanalen med hjälp av felkorrigerande koder är viktigt i detta sammanhang och är huvudtemat för . 3.4 Comparison With Other Anytime Codes .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.