POWER QUALITY IN POWER SYSTEMS, ELECTRICAL MACHINES, AND POWER-ELECTRONIC DRIVES THIRD EDITION This page intentionally left blank POWER QUALITY IN POWER SYSTEMS, ELECTRICAL MACHINES, AND POWER-ELECTRONIC DRIVES THIRD EDITION E F. F WALD UCHS DepartmentofElectrical,Computer,andEnergyEngineering,UniversityofColorado,Boulder,CO,UnitedStates M A.S. M OHAMMAD ASOUM EngineeringDepartment,UtahValleyUniversity(UVU),Orem,UT,UnitedStates AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2023ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. ISBN978-0-12-817856-0 ForinformationonallAcademicPresspublicationsvisitourwebsite athttps://www.elsevier.com/books-and-journals Publisher:CharlotteCockle AcquisitionsEditor:GrahamNisbet EditorialProjectManager:BarbaraL.Makinster ProductionProjectManager:ManjuParamasivam CoverDesigner:VickyPearsonEsser TypesetbySTRAIVE,India Contents 3. Modeling and analysis of induction Preface ix machines 197 Acknowledgments xiii The climate dilemma xv 3.1 Completesinusoidalequivalentcircuitofa Summary overview of chapters xvii three-phaseinductionmachine 199 3.2 Magneticfieldsofthree-phasemachines 1. Introduction to power quality 1 forthecalculationofinductivemachine parameters 206 1.1 Definitionofpowerquality 2 3.3 Steady-statestabilityofathree-phase 1.2 Causesofdisturbancesinpowersystems 2 inductionmachine 210 1.3 Classificationofpowerqualityissues 4 3.4 Spatial(space)harmonicsofathree-phase 1.4 Formulationsandmeasuresusedfor inductionmachine 215 powerquality 17 3.5 Timeharmonicsofathree-phaseinduction 1.5 Effectsofpoorpowerqualityonpower machine 218 systemdevices 52 3.6 Fundamentalandharmonictorquesofan 1.6 Standardsandguidelinesreferringtopower inductionmachine 221 quality 53 3.7 Measurementresultsforthree-andsingle-phase 1.7 Harmonicmodelingphilosophies 61 inductionmachines 227 1.8 Powerqualityimprovementtechniques 63 3.8 Inter-andsubharmonictorquesofthree-phase 1.9 Summary 83 inductionmachines 244 1.10 Problems 84 3.9 Interactionofspaceandtimeharmonicsof References 94 three-phaseinductionmachines 252 Additionalbibliography 96 3.10 Conclusionsconcerninginductionmachine harmonics 255 2. Harmonic models of transformers 99 3.11 Voltage-stresswindingfailuresofAC motorsfedbyvariable-frequency, 2.1 Sinusoidal(linear)modelingoftransformers 100 voltage-andcurrent-sourcePWM 2.2 Harmoniclossesintransformers 101 inverters 255 2.3 Deratingofsingle-phasetransformers 109 3.12 Nonlinearharmonicmodelsofthree-phase 2.4 Nonlinearharmonicmodelsoftransformers 120 inductionmachines 279 2.5 Ferroresonanceofpowertransformers 135 3.13 Staticanddynamicrotoreccentricityof 2.6 Effectsofsolar-geomagneticdisturbanceson three-phaseinductionmachines 282 powersystemsandtransformers 152 3.14 Operationofthree-phasemachines 2.7 Grounding 157 withinasingle-phasepowersystem 283 2.8 Measurementofderatingofthree-phase 3.15 Classificationofthree-phaseinduction transformers 170 machines 283 2.9 Summary 184 3.16 Summary 285 2.10 Problems 185 3.17 Problems 285 References 193 References 293 AdditionalBibliography 196 Additionalbibliography 297 v vi Contents 4. Modeling and analysis of synchronous 6.2 Applicationofcapacitorstoreactivepower machines 299 compensation 581 6.3 Applicationofcapacitorstoharmonic 4.1 Sinusoidalstate-spacemodelingofasynchronous filtering 582 machineinthetimedomain 301 6.4 Powerqualityproblemsassociatedwith 4.2 Steady-state,transient,andsubtransient capacitors 585 operation 307 6.5 Frequencyandcapacitancescanning 605 4.3 Harmonicmodelingofasynchronous 6.6 Harmonicconstraintsforcapacitors 608 machine 371 6.7 Equivalentcircuitsofcapacitors 613 4.4 Discretizationerrorsofnumericalsolutions 396 6.8 Summary 616 4.5 Operatingpoint-dependentreactances 6.9 Problems 617 undersaturatedmagneticfieldconditions 399 References 622 4.6 Summary 402 7. Lifetime reduction of transformers and 4.7 Problems 403 References 416 induction machines 625 Additionalbibliography 419 7.1 Rationaleforrelyingontheworst-case 5. Performance of power-electronic conditions 626 driveswithrespecttospeedandtorque 421 7.2 Elevatedtemperatureriseduetovoltage harmonics 627 5.1 Closed-formandnumerical-solutiontechniques 7.3 Weighted-harmonicfactors 628 forvariable-speed,variable-torquedrives,and 7.4 Exponentsofweighted-harmonicfactors 641 reviewofcircuitapproximationssuitablefor 7.5 Additionallossesortemperaturerisesversus numericalsolutions 421 weighted-harmonicfactors 643 5.2 Three-phasedistributionsystemsupplyingenergy 7.6 Arrheniusplots 645 tolithium-ionbatteriesviarectifiers 427 7.7 Reactionrateequation 646 5.3 Three-phasepermanent-magnetgenerator 7.8 Decreaseoflifetimeduetoanadditional supplyingenergytolead-acidbatteryvia temperaturerise 647 rectifier 479 7.9 Reductionoflifetimeofcomponentswith 5.4 Speedandtorquecontrolofdrivesconsistingof activationenergyE=1.1eVduetoharmonics three-phaseinductionmachineconnectedto oftheterminalvoltagewithinresidentialor current-controlled,voltage-sourceinverter 487 commercialutilitysystems 649 5.5 Speedandtorquecontrolofbrushless-DC 7.10 Possiblelimitsforharmonicvoltages 650 machineorpermanent-magnetmachine 7.11 Probabilisticandtime-varyingnatureof fed/suppliedbyinverterforeithermotoror harmonics 657 generatoroperation 525 7.12 Thecostofharmonics 657 5.6 Controlofspeedandtorqueforthree-phase 7.13 Temperatureasafunctionoftime 658 synchronousmotor/machinefed/suppliedby 7.14 Variousoperatingmodesofrotating eitherlithium-ionbatteryorfuelcellviainverter machines 660 foreithermotororgeneratoroperation 547 7.15 Summary 691 5.7 Performanceissueswithbatteries,fuelcells, 7.16 Problems 693 andcombustionengines 562 References 699 5.8 Summary 562 8. Power system modeling under References 563 nonsinusoidal operating conditions 703 6. Interaction of harmonics with capacitors 567 8.1 Overviewofamodernpowersystem 703 8.2 Powersystemmatrices 707 6.1 Applicationofcapacitorstopower-factor 8.3 Fundamentalpowerflow 722 correction 568 8.4 Newton-basedharmonicpowerflow 748 Contents vii 8.5 Classificationofharmonicpowerflow 11. Optimal placement and sizing of techniques 782 shunt capacitor banks in the presence 8.6 Summary 794 of harmonics 1017 8.7 Problems 794 References 802 11.1 Reactivepowercompensation 1018 11.2 Commontypesofdistributionshuntcapacitor 9. Impact of poor power quality on banks 1021 reliability, relaying, and security 805 11.3 Classificationofcapacitorallocation techniquesforsinusoidaloperating 9.1 Reliabilityindices 805 conditions 1025 9.2 Degradationofreliabilityandsecuritydueto 11.4 Optimalplacementandsizingofshuntcapacitor poorpowerquality 809 banksinthepresenceofharmonics 1047 9.3 Toolsfordetectingpoorpowerquality 840 11.5 Summary 1083 9.4 Toolsforimprovingreliabilityand References 1083 security 858 9.5 Loadsheddingandloadmanagement 873 12. Power quality solutions for renewable 9.6 Energy-storagemethods 873 energy systems 1087 9.7 Matchingtheoperationofintermittent renewablepowerplantswithenergystorage 874 12.1 Energyconservationandefficiency 1087 9.8 Summary 875 12.2 Photovoltaicandthermalsolar(power) 9.9 Problems 876 systems 1098 References 905 12.3 Horizontalandvertical-axeswindpower Additionalbibliography 912 (WP)plants 1113 12.4 Complementarycontrolofrenewableplants 10. The roles of filters in power withenergystorageplants 1145 systems and unified power quality 12.5 ACtransmissionlinesvsDClines 1175 conditioners 915 12.6 Fast-chargingstationsforelectriccars 1175 12.7 Off-shorerenewableplants 1175 10.1 Typesofnonlinearloads 916 12.8 Metering 1176 10.2 Classificationoffiltersemployedinpower 12.9 Otherrenewableenergyplants 1176 systems 918 12.10 Productionofautomotivefuelfromwind, 10.3 Passivefiltersasusedinpowersystems 920 water,andCO 1177 2 10.4 Activefilters 942 12.11 Waterefficiency 1177 10.5 Hybridpowerfilters 945 12.12 Villagewith2600inhabitantsachieves 10.6 Blockdiagramofactivefilters 950 energyindependence 1178 10.7 Controloffilters 952 12.13 Reductionoflifetimeasafunctionof 10.8 Compensationdevicesatfundamentaland temperature 1178 harmonicfrequencies 972 12.14 Parallelingoftwopowersystems 1181 10.9 Unifiedpowerqualityconditioner 12.15 TheTEXASsynchrophasornetwork 1182 (UPQC) 978 12.16 Summary 1182 10.10 TheUPQCcontrolsystem 983 12.17 Problems 1183 10.11 UPQCcontrolusingthePark(dqo) References 1202 transformation 985 10.12 UPQCcontrolbasedontheinstantaneous Glossary of symbols, abbreviations, and realandimaginarypowertheory 988 acronyms 1209 10.13 PerformanceoftheUPQC 1001 Appendices 1225 10.14 Summary 1012 References 1014 Index 1245 This page intentionally left blank Preface This book is intended for graduate stu- NobelPrizeacceptancespeech.Powergener- dentsandprofessionalsworkinginthefields ationatthistimewasmainlybasedoncoal- ofpowersystems,renewableenergy,suchas firedandhydropowerplants.Powerquality windandphotovoltaics,andstoragedevices, playedasubordinaterolebecauseonlyafew suchasbatteriesandfuelcells,includingthe mercury rectifiers and inverters were design of electric power-electronic drives. employedwithinthecentralanddistribution The main objective of this book is to design power system environment. components that meet acceptable power The invention of the semiconductor p-n quality standards. junction [4], along with the development of rectifiers[5]andinverters[6],ledHingorani [7]tobelievethatallendowedelectronspass 1. Past and future electric energy at least once through power-electronic com- systems ponentswithinthepowersystem.Thedevel- opment of light-emitting-diode (LED) lights Edison’s Pearl Street direct-current (DC) [8] and variable-speed drives, such as power station in Manhattan, NYC, opened brushlessDCmachines(inverter-fedACma- in1882[1],wasthefirstcentralpowerplant chines) [9], confirm Hingorani’s prediction. in the United States, providing electric Thus, modern power systems with a high poweronlytoclientsintheimmediatevicin- penetrationofpower-electroniccomponents ity,duetoitslowvoltageandveryhighcur- cameabout, relying mostlyon wind, photo- rent, which had to be transmitted in buried voltaic, solar thermal, and nuclear power DC very-large-cross-section cables to limit plants,asdiscussedinthenextsection.This, ohmic losses. The voltage was controlled inturn,createdanincreasedneedtoinvesti- within the fenced-in power station. This gatepowerqualityduetosource-andload- power station was able to function due to generated harmonics and transients—while theinventionofthemechanicalcommutator, on the other hand, an efficiency increase is onwhichDCmachinesarebased,converting achieved. theACcurrent/voltageoftherotortodirect current/voltage at the terminals of the DC 2. Renewable hybrid energy system generator employing carbon brushes. developments On the other hand, Tesla favored—with hisinventionofthetwo-phaserotatingfield [2]—an alternating current (AC) central Fig.1showsafuturesmartinterconnected fenced-inpowerstationwithvoltageandfre- power and load system where control and quency control. Electricity conduction is dispatch centers combine the advantages of basedonendowedelectrons capableofuse- DC transmission [1]—no stability prob- ful work, as explained by Franck [3] in his lems—with those of AC transmission [2], ix